Solve for x
x=\frac{2\sqrt{89}}{5}+\frac{7}{2}\approx 7.273592453
x=-\frac{2\sqrt{89}}{5}+\frac{7}{2}\approx -0.273592453
Graph
Share
Copied to clipboard
-\frac{1}{4}x^{2}+\frac{7}{4}x+\frac{199}{400}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{7}{4}±\sqrt{\left(\frac{7}{4}\right)^{2}-4\left(-\frac{1}{4}\right)\times \frac{199}{400}}}{2\left(-\frac{1}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{4} for a, \frac{7}{4} for b, and \frac{199}{400} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{7}{4}±\sqrt{\frac{49}{16}-4\left(-\frac{1}{4}\right)\times \frac{199}{400}}}{2\left(-\frac{1}{4}\right)}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{7}{4}±\sqrt{\frac{49}{16}+\frac{199}{400}}}{2\left(-\frac{1}{4}\right)}
Multiply -4 times -\frac{1}{4}.
x=\frac{-\frac{7}{4}±\sqrt{\frac{89}{25}}}{2\left(-\frac{1}{4}\right)}
Add \frac{49}{16} to \frac{199}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{7}{4}±\frac{\sqrt{89}}{5}}{2\left(-\frac{1}{4}\right)}
Take the square root of \frac{89}{25}.
x=\frac{-\frac{7}{4}±\frac{\sqrt{89}}{5}}{-\frac{1}{2}}
Multiply 2 times -\frac{1}{4}.
x=\frac{\frac{\sqrt{89}}{5}-\frac{7}{4}}{-\frac{1}{2}}
Now solve the equation x=\frac{-\frac{7}{4}±\frac{\sqrt{89}}{5}}{-\frac{1}{2}} when ± is plus. Add -\frac{7}{4} to \frac{\sqrt{89}}{5}.
x=-\frac{2\sqrt{89}}{5}+\frac{7}{2}
Divide -\frac{7}{4}+\frac{\sqrt{89}}{5} by -\frac{1}{2} by multiplying -\frac{7}{4}+\frac{\sqrt{89}}{5} by the reciprocal of -\frac{1}{2}.
x=\frac{-\frac{\sqrt{89}}{5}-\frac{7}{4}}{-\frac{1}{2}}
Now solve the equation x=\frac{-\frac{7}{4}±\frac{\sqrt{89}}{5}}{-\frac{1}{2}} when ± is minus. Subtract \frac{\sqrt{89}}{5} from -\frac{7}{4}.
x=\frac{2\sqrt{89}}{5}+\frac{7}{2}
Divide -\frac{7}{4}-\frac{\sqrt{89}}{5} by -\frac{1}{2} by multiplying -\frac{7}{4}-\frac{\sqrt{89}}{5} by the reciprocal of -\frac{1}{2}.
x=-\frac{2\sqrt{89}}{5}+\frac{7}{2} x=\frac{2\sqrt{89}}{5}+\frac{7}{2}
The equation is now solved.
-\frac{1}{4}x^{2}+\frac{7}{4}x+\frac{199}{400}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{4}x^{2}+\frac{7}{4}x+\frac{199}{400}-\frac{199}{400}=-\frac{199}{400}
Subtract \frac{199}{400} from both sides of the equation.
-\frac{1}{4}x^{2}+\frac{7}{4}x=-\frac{199}{400}
Subtracting \frac{199}{400} from itself leaves 0.
\frac{-\frac{1}{4}x^{2}+\frac{7}{4}x}{-\frac{1}{4}}=-\frac{\frac{199}{400}}{-\frac{1}{4}}
Multiply both sides by -4.
x^{2}+\frac{\frac{7}{4}}{-\frac{1}{4}}x=-\frac{\frac{199}{400}}{-\frac{1}{4}}
Dividing by -\frac{1}{4} undoes the multiplication by -\frac{1}{4}.
x^{2}-7x=-\frac{\frac{199}{400}}{-\frac{1}{4}}
Divide \frac{7}{4} by -\frac{1}{4} by multiplying \frac{7}{4} by the reciprocal of -\frac{1}{4}.
x^{2}-7x=\frac{199}{100}
Divide -\frac{199}{400} by -\frac{1}{4} by multiplying -\frac{199}{400} by the reciprocal of -\frac{1}{4}.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=\frac{199}{100}+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=\frac{199}{100}+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{356}{25}
Add \frac{199}{100} to \frac{49}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{2}\right)^{2}=\frac{356}{25}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{356}{25}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{2\sqrt{89}}{5} x-\frac{7}{2}=-\frac{2\sqrt{89}}{5}
Simplify.
x=\frac{2\sqrt{89}}{5}+\frac{7}{2} x=-\frac{2\sqrt{89}}{5}+\frac{7}{2}
Add \frac{7}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}