Evaluate
-\frac{1}{2}=-0.5
Factor
-\frac{1}{2} = -0.5
Share
Copied to clipboard
-\frac{1}{4}\times \frac{4}{3}-\frac{7}{18}\times \frac{9}{21}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
\frac{-4}{4\times 3}-\frac{7}{18}\times \frac{9}{21}
Multiply -\frac{1}{4} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{3}-\frac{7}{18}\times \frac{9}{21}
Cancel out 4 in both numerator and denominator.
-\frac{1}{3}-\frac{7}{18}\times \frac{9}{21}
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
-\frac{1}{3}-\frac{7}{18}\times \frac{3}{7}
Reduce the fraction \frac{9}{21} to lowest terms by extracting and canceling out 3.
-\frac{1}{3}-\frac{7\times 3}{18\times 7}
Multiply \frac{7}{18} times \frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
-\frac{1}{3}-\frac{3}{18}
Cancel out 7 in both numerator and denominator.
-\frac{1}{3}-\frac{1}{6}
Reduce the fraction \frac{3}{18} to lowest terms by extracting and canceling out 3.
-\frac{2}{6}-\frac{1}{6}
Least common multiple of 3 and 6 is 6. Convert -\frac{1}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{-2-1}{6}
Since -\frac{2}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-3}{6}
Subtract 1 from -2 to get -3.
-\frac{1}{2}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}