Evaluate
-\frac{19}{6}\approx -3.166666667
Factor
-\frac{19}{6} = -3\frac{1}{6} = -3.1666666666666665
Share
Copied to clipboard
-\frac{1}{3}-\frac{4}{3}-\frac{15}{12}-\frac{5}{4}+1
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
\frac{-1-4}{3}-\frac{15}{12}-\frac{5}{4}+1
Since -\frac{1}{3} and \frac{4}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{3}-\frac{15}{12}-\frac{5}{4}+1
Subtract 4 from -1 to get -5.
-\frac{5}{3}-\frac{5}{4}-\frac{5}{4}+1
Reduce the fraction \frac{15}{12} to lowest terms by extracting and canceling out 3.
-\frac{20}{12}-\frac{15}{12}-\frac{5}{4}+1
Least common multiple of 3 and 4 is 12. Convert -\frac{5}{3} and \frac{5}{4} to fractions with denominator 12.
\frac{-20-15}{12}-\frac{5}{4}+1
Since -\frac{20}{12} and \frac{15}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{35}{12}-\frac{5}{4}+1
Subtract 15 from -20 to get -35.
-\frac{35}{12}-\frac{15}{12}+1
Least common multiple of 12 and 4 is 12. Convert -\frac{35}{12} and \frac{5}{4} to fractions with denominator 12.
\frac{-35-15}{12}+1
Since -\frac{35}{12} and \frac{15}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-50}{12}+1
Subtract 15 from -35 to get -50.
-\frac{25}{6}+1
Reduce the fraction \frac{-50}{12} to lowest terms by extracting and canceling out 2.
-\frac{25}{6}+\frac{6}{6}
Convert 1 to fraction \frac{6}{6}.
\frac{-25+6}{6}
Since -\frac{25}{6} and \frac{6}{6} have the same denominator, add them by adding their numerators.
-\frac{19}{6}
Add -25 and 6 to get -19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}