Evaluate
\frac{22}{3}\approx 7.333333333
Factor
\frac{2 \cdot 11}{3} = 7\frac{1}{3} = 7.333333333333333
Share
Copied to clipboard
\frac{-4}{3}+\frac{1}{2}\times 4+4+\frac{8}{3}
Express -\frac{1}{3}\times 4 as a single fraction.
-\frac{4}{3}+\frac{1}{2}\times 4+4+\frac{8}{3}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-\frac{4}{3}+\frac{4}{2}+4+\frac{8}{3}
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
-\frac{4}{3}+2+4+\frac{8}{3}
Divide 4 by 2 to get 2.
-\frac{4}{3}+\frac{6}{3}+4+\frac{8}{3}
Convert 2 to fraction \frac{6}{3}.
\frac{-4+6}{3}+4+\frac{8}{3}
Since -\frac{4}{3} and \frac{6}{3} have the same denominator, add them by adding their numerators.
\frac{2}{3}+4+\frac{8}{3}
Add -4 and 6 to get 2.
\frac{2}{3}+\frac{12}{3}+\frac{8}{3}
Convert 4 to fraction \frac{12}{3}.
\frac{2+12}{3}+\frac{8}{3}
Since \frac{2}{3} and \frac{12}{3} have the same denominator, add them by adding their numerators.
\frac{14}{3}+\frac{8}{3}
Add 2 and 12 to get 14.
\frac{14+8}{3}
Since \frac{14}{3} and \frac{8}{3} have the same denominator, add them by adding their numerators.
\frac{22}{3}
Add 14 and 8 to get 22.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}