Evaluate
0
Factor
0
Share
Copied to clipboard
-\frac{1}{3}\lfloor \frac{2}{5}-\frac{1}{2}\left(\frac{5}{15}-\frac{3}{15}\right)\rfloor
Least common multiple of 3 and 5 is 15. Convert \frac{1}{3} and \frac{1}{5} to fractions with denominator 15.
-\frac{1}{3}\lfloor \frac{2}{5}-\frac{1}{2}\times \frac{5-3}{15}\rfloor
Since \frac{5}{15} and \frac{3}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{3}\lfloor \frac{2}{5}-\frac{1}{2}\times \frac{2}{15}\rfloor
Subtract 3 from 5 to get 2.
-\frac{1}{3}\lfloor \frac{2}{5}-\frac{2}{2\times 15}\rfloor
Multiply \frac{1}{2} times \frac{2}{15} by multiplying numerator times numerator and denominator times denominator.
-\frac{1}{3}\lfloor \frac{2}{5}-\frac{1}{15}\rfloor
Cancel out 2 in both numerator and denominator.
-\frac{1}{3}\lfloor \frac{6}{15}-\frac{1}{15}\rfloor
Least common multiple of 5 and 15 is 15. Convert \frac{2}{5} and \frac{1}{15} to fractions with denominator 15.
-\frac{1}{3}\lfloor \frac{6-1}{15}\rfloor
Since \frac{6}{15} and \frac{1}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{3}\lfloor \frac{5}{15}\rfloor
Subtract 1 from 6 to get 5.
-\frac{1}{3}\lfloor \frac{1}{3}\rfloor
Reduce the fraction \frac{5}{15} to lowest terms by extracting and canceling out 5.
-\frac{1}{3}\times 0
The floor of a real number a is the largest integer number less than or equal to a. The floor of 0+\frac{1}{3} is 0.
0
Multiply -\frac{1}{3} and 0 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}