Solve for x
x\geq -\frac{14}{39}
Graph
Share
Copied to clipboard
-\frac{1}{2}x-\frac{1}{3}-6x\leq 2
Subtract 6x from both sides.
-\frac{13}{2}x-\frac{1}{3}\leq 2
Combine -\frac{1}{2}x and -6x to get -\frac{13}{2}x.
-\frac{13}{2}x\leq 2+\frac{1}{3}
Add \frac{1}{3} to both sides.
-\frac{13}{2}x\leq \frac{6}{3}+\frac{1}{3}
Convert 2 to fraction \frac{6}{3}.
-\frac{13}{2}x\leq \frac{6+1}{3}
Since \frac{6}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
-\frac{13}{2}x\leq \frac{7}{3}
Add 6 and 1 to get 7.
x\geq \frac{7}{3}\left(-\frac{2}{13}\right)
Multiply both sides by -\frac{2}{13}, the reciprocal of -\frac{13}{2}. Since -\frac{13}{2} is negative, the inequality direction is changed.
x\geq \frac{7\left(-2\right)}{3\times 13}
Multiply \frac{7}{3} times -\frac{2}{13} by multiplying numerator times numerator and denominator times denominator.
x\geq \frac{-14}{39}
Do the multiplications in the fraction \frac{7\left(-2\right)}{3\times 13}.
x\geq -\frac{14}{39}
Fraction \frac{-14}{39} can be rewritten as -\frac{14}{39} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}