Solve for a
a=\frac{8b+14}{3}
Solve for b
b=\frac{3a}{8}-\frac{7}{4}
Quiz
Linear Equation
5 problems similar to:
- \frac{ 1 }{ 2 } a+ \frac{ 4 }{ 3 } b = - \frac{ 7 }{ 3 }
Share
Copied to clipboard
-\frac{1}{2}a=-\frac{7}{3}-\frac{4}{3}b
Subtract \frac{4}{3}b from both sides.
-\frac{1}{2}a=\frac{-4b-7}{3}
The equation is in standard form.
\frac{-\frac{1}{2}a}{-\frac{1}{2}}=\frac{-4b-7}{-\frac{1}{2}\times 3}
Multiply both sides by -2.
a=\frac{-4b-7}{-\frac{1}{2}\times 3}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
a=\frac{8b+14}{3}
Divide \frac{-7-4b}{3} by -\frac{1}{2} by multiplying \frac{-7-4b}{3} by the reciprocal of -\frac{1}{2}.
\frac{4}{3}b=-\frac{7}{3}+\frac{1}{2}a
Add \frac{1}{2}a to both sides.
\frac{4}{3}b=\frac{a}{2}-\frac{7}{3}
The equation is in standard form.
\frac{\frac{4}{3}b}{\frac{4}{3}}=\frac{\frac{a}{2}-\frac{7}{3}}{\frac{4}{3}}
Divide both sides of the equation by \frac{4}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
b=\frac{\frac{a}{2}-\frac{7}{3}}{\frac{4}{3}}
Dividing by \frac{4}{3} undoes the multiplication by \frac{4}{3}.
b=\frac{3a}{8}-\frac{7}{4}
Divide -\frac{7}{3}+\frac{a}{2} by \frac{4}{3} by multiplying -\frac{7}{3}+\frac{a}{2} by the reciprocal of \frac{4}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}