Solve for x
x=2\sqrt{2}+4\approx 6.828427125
x=4-2\sqrt{2}\approx 1.171572875
Graph
Share
Copied to clipboard
-\frac{1}{2}x^{2}+4x=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-\frac{1}{2}x^{2}+4x-4=4-4
Subtract 4 from both sides of the equation.
-\frac{1}{2}x^{2}+4x-4=0
Subtracting 4 from itself leaves 0.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{1}{2}\right)\left(-4\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 4 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-\frac{1}{2}\right)\left(-4\right)}}{2\left(-\frac{1}{2}\right)}
Square 4.
x=\frac{-4±\sqrt{16+2\left(-4\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-4±\sqrt{16-8}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -4.
x=\frac{-4±\sqrt{8}}{2\left(-\frac{1}{2}\right)}
Add 16 to -8.
x=\frac{-4±2\sqrt{2}}{2\left(-\frac{1}{2}\right)}
Take the square root of 8.
x=\frac{-4±2\sqrt{2}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{2\sqrt{2}-4}{-1}
Now solve the equation x=\frac{-4±2\sqrt{2}}{-1} when ± is plus. Add -4 to 2\sqrt{2}.
x=4-2\sqrt{2}
Divide -4+2\sqrt{2} by -1.
x=\frac{-2\sqrt{2}-4}{-1}
Now solve the equation x=\frac{-4±2\sqrt{2}}{-1} when ± is minus. Subtract 2\sqrt{2} from -4.
x=2\sqrt{2}+4
Divide -4-2\sqrt{2} by -1.
x=4-2\sqrt{2} x=2\sqrt{2}+4
The equation is now solved.
-\frac{1}{2}x^{2}+4x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}+4x}{-\frac{1}{2}}=\frac{4}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{4}{-\frac{1}{2}}x=\frac{4}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-8x=\frac{4}{-\frac{1}{2}}
Divide 4 by -\frac{1}{2} by multiplying 4 by the reciprocal of -\frac{1}{2}.
x^{2}-8x=-8
Divide 4 by -\frac{1}{2} by multiplying 4 by the reciprocal of -\frac{1}{2}.
x^{2}-8x+\left(-4\right)^{2}=-8+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-8+16
Square -4.
x^{2}-8x+16=8
Add -8 to 16.
\left(x-4\right)^{2}=8
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{8}
Take the square root of both sides of the equation.
x-4=2\sqrt{2} x-4=-2\sqrt{2}
Simplify.
x=2\sqrt{2}+4 x=4-2\sqrt{2}
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}