Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{2}\left(4-4x+x^{2}\right)+4+2x+6=x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
-2+2x-\frac{1}{2}x^{2}+4+2x+6=x
Use the distributive property to multiply -\frac{1}{2} by 4-4x+x^{2}.
2+2x-\frac{1}{2}x^{2}+2x+6=x
Add -2 and 4 to get 2.
2+4x-\frac{1}{2}x^{2}+6=x
Combine 2x and 2x to get 4x.
8+4x-\frac{1}{2}x^{2}=x
Add 2 and 6 to get 8.
8+4x-\frac{1}{2}x^{2}-x=0
Subtract x from both sides.
8+3x-\frac{1}{2}x^{2}=0
Combine 4x and -x to get 3x.
-\frac{1}{2}x^{2}+3x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-\frac{1}{2}\right)\times 8}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 3 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-\frac{1}{2}\right)\times 8}}{2\left(-\frac{1}{2}\right)}
Square 3.
x=\frac{-3±\sqrt{9+2\times 8}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-3±\sqrt{9+16}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times 8.
x=\frac{-3±\sqrt{25}}{2\left(-\frac{1}{2}\right)}
Add 9 to 16.
x=\frac{-3±5}{2\left(-\frac{1}{2}\right)}
Take the square root of 25.
x=\frac{-3±5}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{2}{-1}
Now solve the equation x=\frac{-3±5}{-1} when ± is plus. Add -3 to 5.
x=-2
Divide 2 by -1.
x=-\frac{8}{-1}
Now solve the equation x=\frac{-3±5}{-1} when ± is minus. Subtract 5 from -3.
x=8
Divide -8 by -1.
x=-2 x=8
The equation is now solved.
-\frac{1}{2}\left(4-4x+x^{2}\right)+4+2x+6=x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
-2+2x-\frac{1}{2}x^{2}+4+2x+6=x
Use the distributive property to multiply -\frac{1}{2} by 4-4x+x^{2}.
2+2x-\frac{1}{2}x^{2}+2x+6=x
Add -2 and 4 to get 2.
2+4x-\frac{1}{2}x^{2}+6=x
Combine 2x and 2x to get 4x.
8+4x-\frac{1}{2}x^{2}=x
Add 2 and 6 to get 8.
8+4x-\frac{1}{2}x^{2}-x=0
Subtract x from both sides.
8+3x-\frac{1}{2}x^{2}=0
Combine 4x and -x to get 3x.
3x-\frac{1}{2}x^{2}=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
-\frac{1}{2}x^{2}+3x=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}+3x}{-\frac{1}{2}}=-\frac{8}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{3}{-\frac{1}{2}}x=-\frac{8}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-6x=-\frac{8}{-\frac{1}{2}}
Divide 3 by -\frac{1}{2} by multiplying 3 by the reciprocal of -\frac{1}{2}.
x^{2}-6x=16
Divide -8 by -\frac{1}{2} by multiplying -8 by the reciprocal of -\frac{1}{2}.
x^{2}-6x+\left(-3\right)^{2}=16+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=16+9
Square -3.
x^{2}-6x+9=25
Add 16 to 9.
\left(x-3\right)^{2}=25
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-3=5 x-3=-5
Simplify.
x=8 x=-2
Add 3 to both sides of the equation.