Evaluate
\frac{95}{42}\approx 2.261904762
Factor
\frac{5 \cdot 19}{2 \cdot 3 \cdot 7} = 2\frac{11}{42} = 2.261904761904762
Share
Copied to clipboard
-\frac{1}{14}+\frac{7}{3}
The opposite of -\frac{7}{3} is \frac{7}{3}.
-\frac{3}{42}+\frac{98}{42}
Least common multiple of 14 and 3 is 42. Convert -\frac{1}{14} and \frac{7}{3} to fractions with denominator 42.
\frac{-3+98}{42}
Since -\frac{3}{42} and \frac{98}{42} have the same denominator, add them by adding their numerators.
\frac{95}{42}
Add -3 and 98 to get 95.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}