Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{10}x^{2}+20-\frac{1}{10}x^{2}=-20
Subtract \frac{1}{10}x^{2} from both sides.
-\frac{1}{5}x^{2}+20=-20
Combine -\frac{1}{10}x^{2} and -\frac{1}{10}x^{2} to get -\frac{1}{5}x^{2}.
-\frac{1}{5}x^{2}=-20-20
Subtract 20 from both sides.
-\frac{1}{5}x^{2}=-40
Subtract 20 from -20 to get -40.
x^{2}=-40\left(-5\right)
Multiply both sides by -5, the reciprocal of -\frac{1}{5}.
x^{2}=200
Multiply -40 and -5 to get 200.
x=10\sqrt{2} x=-10\sqrt{2}
Take the square root of both sides of the equation.
-\frac{1}{10}x^{2}+20-\frac{1}{10}x^{2}=-20
Subtract \frac{1}{10}x^{2} from both sides.
-\frac{1}{5}x^{2}+20=-20
Combine -\frac{1}{10}x^{2} and -\frac{1}{10}x^{2} to get -\frac{1}{5}x^{2}.
-\frac{1}{5}x^{2}+20+20=0
Add 20 to both sides.
-\frac{1}{5}x^{2}+40=0
Add 20 and 20 to get 40.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{5}\right)\times 40}}{2\left(-\frac{1}{5}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{5} for a, 0 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{1}{5}\right)\times 40}}{2\left(-\frac{1}{5}\right)}
Square 0.
x=\frac{0±\sqrt{\frac{4}{5}\times 40}}{2\left(-\frac{1}{5}\right)}
Multiply -4 times -\frac{1}{5}.
x=\frac{0±\sqrt{32}}{2\left(-\frac{1}{5}\right)}
Multiply \frac{4}{5} times 40.
x=\frac{0±4\sqrt{2}}{2\left(-\frac{1}{5}\right)}
Take the square root of 32.
x=\frac{0±4\sqrt{2}}{-\frac{2}{5}}
Multiply 2 times -\frac{1}{5}.
x=-10\sqrt{2}
Now solve the equation x=\frac{0±4\sqrt{2}}{-\frac{2}{5}} when ± is plus.
x=10\sqrt{2}
Now solve the equation x=\frac{0±4\sqrt{2}}{-\frac{2}{5}} when ± is minus.
x=-10\sqrt{2} x=10\sqrt{2}
The equation is now solved.