Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3\left(-36\right)=\left(3x+1\right)^{2}
Variable x cannot be equal to -\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by 3\left(3x+1\right)^{2}, the least common multiple of \left(1+3x\right)^{2},3.
108=\left(3x+1\right)^{2}
Multiply -3 and -36 to get 108.
108=9x^{2}+6x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
9x^{2}+6x+1=108
Swap sides so that all variable terms are on the left hand side.
9x^{2}+6x+1-108=0
Subtract 108 from both sides.
9x^{2}+6x-107=0
Subtract 108 from 1 to get -107.
x=\frac{-6±\sqrt{6^{2}-4\times 9\left(-107\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 6 for b, and -107 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 9\left(-107\right)}}{2\times 9}
Square 6.
x=\frac{-6±\sqrt{36-36\left(-107\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-6±\sqrt{36+3852}}{2\times 9}
Multiply -36 times -107.
x=\frac{-6±\sqrt{3888}}{2\times 9}
Add 36 to 3852.
x=\frac{-6±36\sqrt{3}}{2\times 9}
Take the square root of 3888.
x=\frac{-6±36\sqrt{3}}{18}
Multiply 2 times 9.
x=\frac{36\sqrt{3}-6}{18}
Now solve the equation x=\frac{-6±36\sqrt{3}}{18} when ± is plus. Add -6 to 36\sqrt{3}.
x=2\sqrt{3}-\frac{1}{3}
Divide -6+36\sqrt{3} by 18.
x=\frac{-36\sqrt{3}-6}{18}
Now solve the equation x=\frac{-6±36\sqrt{3}}{18} when ± is minus. Subtract 36\sqrt{3} from -6.
x=-2\sqrt{3}-\frac{1}{3}
Divide -6-36\sqrt{3} by 18.
x=2\sqrt{3}-\frac{1}{3} x=-2\sqrt{3}-\frac{1}{3}
The equation is now solved.
-3\left(-36\right)=\left(3x+1\right)^{2}
Variable x cannot be equal to -\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by 3\left(3x+1\right)^{2}, the least common multiple of \left(1+3x\right)^{2},3.
108=\left(3x+1\right)^{2}
Multiply -3 and -36 to get 108.
108=9x^{2}+6x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
9x^{2}+6x+1=108
Swap sides so that all variable terms are on the left hand side.
9x^{2}+6x=108-1
Subtract 1 from both sides.
9x^{2}+6x=107
Subtract 1 from 108 to get 107.
\frac{9x^{2}+6x}{9}=\frac{107}{9}
Divide both sides by 9.
x^{2}+\frac{6}{9}x=\frac{107}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{2}{3}x=\frac{107}{9}
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{107}{9}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{107+1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=12
Add \frac{107}{9} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=12
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{12}
Take the square root of both sides of the equation.
x+\frac{1}{3}=2\sqrt{3} x+\frac{1}{3}=-2\sqrt{3}
Simplify.
x=2\sqrt{3}-\frac{1}{3} x=-2\sqrt{3}-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.