Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-12x+16=8
Multiply both sides of the equation by 4.
-x^{2}-12x+16-8=0
Subtract 8 from both sides.
-x^{2}-12x+8=0
Subtract 8 from 16 to get 8.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -12 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-1\right)\times 8}}{2\left(-1\right)}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144+4\times 8}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-12\right)±\sqrt{144+32}}{2\left(-1\right)}
Multiply 4 times 8.
x=\frac{-\left(-12\right)±\sqrt{176}}{2\left(-1\right)}
Add 144 to 32.
x=\frac{-\left(-12\right)±4\sqrt{11}}{2\left(-1\right)}
Take the square root of 176.
x=\frac{12±4\sqrt{11}}{2\left(-1\right)}
The opposite of -12 is 12.
x=\frac{12±4\sqrt{11}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{11}+12}{-2}
Now solve the equation x=\frac{12±4\sqrt{11}}{-2} when ± is plus. Add 12 to 4\sqrt{11}.
x=-2\sqrt{11}-6
Divide 12+4\sqrt{11} by -2.
x=\frac{12-4\sqrt{11}}{-2}
Now solve the equation x=\frac{12±4\sqrt{11}}{-2} when ± is minus. Subtract 4\sqrt{11} from 12.
x=2\sqrt{11}-6
Divide 12-4\sqrt{11} by -2.
x=-2\sqrt{11}-6 x=2\sqrt{11}-6
The equation is now solved.
-x^{2}-12x+16=8
Multiply both sides of the equation by 4.
-x^{2}-12x=8-16
Subtract 16 from both sides.
-x^{2}-12x=-8
Subtract 16 from 8 to get -8.
\frac{-x^{2}-12x}{-1}=-\frac{8}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{12}{-1}\right)x=-\frac{8}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+12x=-\frac{8}{-1}
Divide -12 by -1.
x^{2}+12x=8
Divide -8 by -1.
x^{2}+12x+6^{2}=8+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=8+36
Square 6.
x^{2}+12x+36=44
Add 8 to 36.
\left(x+6\right)^{2}=44
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{44}
Take the square root of both sides of the equation.
x+6=2\sqrt{11} x+6=-2\sqrt{11}
Simplify.
x=2\sqrt{11}-6 x=-2\sqrt{11}-6
Subtract 6 from both sides of the equation.