Solve for x (complex solution)
x=-6+2i
x=-6-2i
Graph
Share
Copied to clipboard
-x^{2}-12x+16=56
Multiply both sides of the equation by 4.
-x^{2}-12x+16-56=0
Subtract 56 from both sides.
-x^{2}-12x-40=0
Subtract 56 from 16 to get -40.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-1\right)\left(-40\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -12 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-1\right)\left(-40\right)}}{2\left(-1\right)}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144+4\left(-40\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-12\right)±\sqrt{144-160}}{2\left(-1\right)}
Multiply 4 times -40.
x=\frac{-\left(-12\right)±\sqrt{-16}}{2\left(-1\right)}
Add 144 to -160.
x=\frac{-\left(-12\right)±4i}{2\left(-1\right)}
Take the square root of -16.
x=\frac{12±4i}{2\left(-1\right)}
The opposite of -12 is 12.
x=\frac{12±4i}{-2}
Multiply 2 times -1.
x=\frac{12+4i}{-2}
Now solve the equation x=\frac{12±4i}{-2} when ± is plus. Add 12 to 4i.
x=-6-2i
Divide 12+4i by -2.
x=\frac{12-4i}{-2}
Now solve the equation x=\frac{12±4i}{-2} when ± is minus. Subtract 4i from 12.
x=-6+2i
Divide 12-4i by -2.
x=-6-2i x=-6+2i
The equation is now solved.
-x^{2}-12x+16=56
Multiply both sides of the equation by 4.
-x^{2}-12x=56-16
Subtract 16 from both sides.
-x^{2}-12x=40
Subtract 16 from 56 to get 40.
\frac{-x^{2}-12x}{-1}=\frac{40}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{12}{-1}\right)x=\frac{40}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+12x=\frac{40}{-1}
Divide -12 by -1.
x^{2}+12x=-40
Divide 40 by -1.
x^{2}+12x+6^{2}=-40+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=-40+36
Square 6.
x^{2}+12x+36=-4
Add -40 to 36.
\left(x+6\right)^{2}=-4
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{-4}
Take the square root of both sides of the equation.
x+6=2i x+6=-2i
Simplify.
x=-6+2i x=-6-2i
Subtract 6 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}