Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{u_{1}v_{0}}{y_{0}^{2}+\omega }\text{, }&v_{0}\neq 0\text{ and }u_{1}\neq 0\text{ and }y_{0}\neq -i\sqrt{\omega }\text{ and }y_{0}\neq i\sqrt{\omega }\text{ and }\omega \neq -y_{0}^{2}\\a\neq 0\text{, }&\left(v_{0}=0\text{ or }u_{1}=0\right)\text{ and }\omega =-y_{0}^{2}\end{matrix}\right.
Solve for u_1 (complex solution)
\left\{\begin{matrix}u_{1}=\frac{a\left(y_{0}^{2}+\omega \right)}{v_{0}}\text{, }&v_{0}\neq 0\text{ and }a\neq 0\\u_{1}\in \mathrm{C}\text{, }&\left(y_{0}=-i\sqrt{\omega }\text{ or }y_{0}=i\sqrt{\omega }\right)\text{ and }v_{0}=0\text{ and }a\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{u_{1}v_{0}}{y_{0}^{2}+\omega }\text{, }&v_{0}\neq 0\text{ and }u_{1}\neq 0\text{ and }\left(|y_{0}|\neq \sqrt{-\omega }\text{ or }\omega >0\right)\text{ and }\omega \neq -y_{0}^{2}\\a\neq 0\text{, }&\left(v_{0}=0\text{ or }u_{1}=0\right)\text{ and }\omega =-y_{0}^{2}\end{matrix}\right.
Solve for u_1
\left\{\begin{matrix}u_{1}=\frac{a\left(y_{0}^{2}+\omega \right)}{v_{0}}\text{, }&v_{0}\neq 0\text{ and }a\neq 0\\u_{1}\in \mathrm{R}\text{, }&v_{0}=0\text{ and }\omega =-y_{0}^{2}\text{ and }a\neq 0\end{matrix}\right.
Share
Copied to clipboard
-y_{0}^{2}\times 2a+2u_{1}v_{0}=\omega \times 2a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2a, the least common multiple of 2a,a.
-y_{0}^{2}\times 2a+2u_{1}v_{0}-\omega \times 2a=0
Subtract \omega \times 2a from both sides.
-2y_{0}^{2}a+2u_{1}v_{0}-\omega \times 2a=0
Multiply -1 and 2 to get -2.
-2y_{0}^{2}a+2u_{1}v_{0}-2\omega a=0
Multiply -1 and 2 to get -2.
-2y_{0}^{2}a-2\omega a=-2u_{1}v_{0}
Subtract 2u_{1}v_{0} from both sides. Anything subtracted from zero gives its negation.
\left(-2y_{0}^{2}-2\omega \right)a=-2u_{1}v_{0}
Combine all terms containing a.
\frac{\left(-2y_{0}^{2}-2\omega \right)a}{-2y_{0}^{2}-2\omega }=-\frac{2u_{1}v_{0}}{-2y_{0}^{2}-2\omega }
Divide both sides by -2y_{0}^{2}-2\omega .
a=-\frac{2u_{1}v_{0}}{-2y_{0}^{2}-2\omega }
Dividing by -2y_{0}^{2}-2\omega undoes the multiplication by -2y_{0}^{2}-2\omega .
a=\frac{u_{1}v_{0}}{y_{0}^{2}+\omega }
Divide -2u_{1}v_{0} by -2y_{0}^{2}-2\omega .
a=\frac{u_{1}v_{0}}{y_{0}^{2}+\omega }\text{, }a\neq 0
Variable a cannot be equal to 0.
-y_{0}^{2}\times 2a+2u_{1}v_{0}=\omega \times 2a
Multiply both sides of the equation by 2a, the least common multiple of 2a,a.
2u_{1}v_{0}=\omega \times 2a+y_{0}^{2}\times 2a
Add y_{0}^{2}\times 2a to both sides.
2v_{0}u_{1}=2ay_{0}^{2}+2a\omega
The equation is in standard form.
\frac{2v_{0}u_{1}}{2v_{0}}=\frac{2a\left(y_{0}^{2}+\omega \right)}{2v_{0}}
Divide both sides by 2v_{0}.
u_{1}=\frac{2a\left(y_{0}^{2}+\omega \right)}{2v_{0}}
Dividing by 2v_{0} undoes the multiplication by 2v_{0}.
u_{1}=\frac{a\left(y_{0}^{2}+\omega \right)}{v_{0}}
Divide 2a\left(\omega +y_{0}^{2}\right) by 2v_{0}.
-y_{0}^{2}\times 2a+2u_{1}v_{0}=\omega \times 2a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2a, the least common multiple of 2a,a.
-y_{0}^{2}\times 2a+2u_{1}v_{0}-\omega \times 2a=0
Subtract \omega \times 2a from both sides.
-2y_{0}^{2}a+2u_{1}v_{0}-\omega \times 2a=0
Multiply -1 and 2 to get -2.
-2y_{0}^{2}a+2u_{1}v_{0}-2\omega a=0
Multiply -1 and 2 to get -2.
-2y_{0}^{2}a-2\omega a=-2u_{1}v_{0}
Subtract 2u_{1}v_{0} from both sides. Anything subtracted from zero gives its negation.
\left(-2y_{0}^{2}-2\omega \right)a=-2u_{1}v_{0}
Combine all terms containing a.
\frac{\left(-2y_{0}^{2}-2\omega \right)a}{-2y_{0}^{2}-2\omega }=-\frac{2u_{1}v_{0}}{-2y_{0}^{2}-2\omega }
Divide both sides by -2y_{0}^{2}-2\omega .
a=-\frac{2u_{1}v_{0}}{-2y_{0}^{2}-2\omega }
Dividing by -2y_{0}^{2}-2\omega undoes the multiplication by -2y_{0}^{2}-2\omega .
a=\frac{u_{1}v_{0}}{y_{0}^{2}+\omega }
Divide -2u_{1}v_{0} by -2y_{0}^{2}-2\omega .
a=\frac{u_{1}v_{0}}{y_{0}^{2}+\omega }\text{, }a\neq 0
Variable a cannot be equal to 0.
-y_{0}^{2}\times 2a+2u_{1}v_{0}=\omega \times 2a
Multiply both sides of the equation by 2a, the least common multiple of 2a,a.
2u_{1}v_{0}=\omega \times 2a+y_{0}^{2}\times 2a
Add y_{0}^{2}\times 2a to both sides.
2v_{0}u_{1}=2ay_{0}^{2}+2a\omega
The equation is in standard form.
\frac{2v_{0}u_{1}}{2v_{0}}=\frac{2a\left(y_{0}^{2}+\omega \right)}{2v_{0}}
Divide both sides by 2v_{0}.
u_{1}=\frac{2a\left(y_{0}^{2}+\omega \right)}{2v_{0}}
Dividing by 2v_{0} undoes the multiplication by 2v_{0}.
u_{1}=\frac{a\left(y_{0}^{2}+\omega \right)}{v_{0}}
Divide 2a\left(\omega +y_{0}^{2}\right) by 2v_{0}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}