Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{bcy^{2}}{18b-7cx}\text{, }&c\neq 0\text{ and }b\neq 0\text{ and }y\neq 0\text{ and }b\neq \frac{7cx}{18}\\a\neq 0\text{, }&b=\frac{7cx}{18}\text{ and }y=0\text{ and }c\neq 0\text{ and }x\neq 0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{7acx}{cy^{2}+18a}\text{, }&c\neq 0\text{ and }a\neq 0\text{ and }x\neq 0\text{ and }a\neq -\frac{cy^{2}}{18}\text{ and }y\neq -3ic^{-\frac{1}{2}}\sqrt{2a}\text{ and }y\neq 3ic^{-\frac{1}{2}}\sqrt{2a}\\b\neq 0\text{, }&a=-\frac{cy^{2}}{18}\text{ and }x=0\text{ and }c\neq 0\text{ and }y\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{bcy^{2}}{18b-7cx}\text{, }&c\neq 0\text{ and }b\neq 0\text{ and }y\neq 0\text{ and }b\neq \frac{7cx}{18}\\a\neq 0\text{, }&b=\frac{7cx}{18}\text{ and }y=0\text{ and }x\neq 0\text{ and }c\neq 0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{7acx}{cy^{2}+18a}\text{, }&x\neq 0\text{ and }a\neq 0\text{ and }\left(a>0\text{ or }c<0\text{ or }|y|\neq 3\sqrt{-\frac{2a}{c}}\right)\text{ and }\left(c>0\text{ or }a<0\text{ or }|y|\neq 3\sqrt{-\frac{2a}{c}}\right)\text{ and }c\neq 0\text{ and }a\neq -\frac{cy^{2}}{18}\\b\neq 0\text{, }&a=-\frac{cy^{2}}{18}\text{ and }x=0\text{ and }c\neq 0\text{ and }y\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
-bcy^{2}+ac\times 7x-ab\times 18=0
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by abc, the least common multiple of a,b,c.
ac\times 7x-ab\times 18=bcy^{2}
Add bcy^{2} to both sides. Anything plus zero gives itself.
ac\times 7x-18ab=bcy^{2}
Multiply -1 and 18 to get -18.
\left(c\times 7x-18b\right)a=bcy^{2}
Combine all terms containing a.
\left(7cx-18b\right)a=bcy^{2}
The equation is in standard form.
\frac{\left(7cx-18b\right)a}{7cx-18b}=\frac{bcy^{2}}{7cx-18b}
Divide both sides by 7xc-18b.
a=\frac{bcy^{2}}{7cx-18b}
Dividing by 7xc-18b undoes the multiplication by 7xc-18b.
a=\frac{bcy^{2}}{7cx-18b}\text{, }a\neq 0
Variable a cannot be equal to 0.
-bcy^{2}+ac\times 7x-ab\times 18=0
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by abc, the least common multiple of a,b,c.
-bcy^{2}-ab\times 18=-ac\times 7x
Subtract ac\times 7x from both sides. Anything subtracted from zero gives its negation.
-bcy^{2}-18ab=-ac\times 7x
Multiply -1 and 18 to get -18.
-bcy^{2}-18ab=-7acx
Multiply -1 and 7 to get -7.
\left(-cy^{2}-18a\right)b=-7acx
Combine all terms containing b.
\frac{\left(-cy^{2}-18a\right)b}{-cy^{2}-18a}=-\frac{7acx}{-cy^{2}-18a}
Divide both sides by -y^{2}c-18a.
b=-\frac{7acx}{-cy^{2}-18a}
Dividing by -y^{2}c-18a undoes the multiplication by -y^{2}c-18a.
b=\frac{7acx}{cy^{2}+18a}
Divide -7acx by -y^{2}c-18a.
b=\frac{7acx}{cy^{2}+18a}\text{, }b\neq 0
Variable b cannot be equal to 0.
-bcy^{2}+ac\times 7x-ab\times 18=0
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by abc, the least common multiple of a,b,c.
ac\times 7x-ab\times 18=bcy^{2}
Add bcy^{2} to both sides. Anything plus zero gives itself.
ac\times 7x-18ab=bcy^{2}
Multiply -1 and 18 to get -18.
\left(c\times 7x-18b\right)a=bcy^{2}
Combine all terms containing a.
\left(7cx-18b\right)a=bcy^{2}
The equation is in standard form.
\frac{\left(7cx-18b\right)a}{7cx-18b}=\frac{bcy^{2}}{7cx-18b}
Divide both sides by 7cx-18b.
a=\frac{bcy^{2}}{7cx-18b}
Dividing by 7cx-18b undoes the multiplication by 7cx-18b.
a=\frac{bcy^{2}}{7cx-18b}\text{, }a\neq 0
Variable a cannot be equal to 0.
-bcy^{2}+ac\times 7x-ab\times 18=0
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by abc, the least common multiple of a,b,c.
-bcy^{2}-ab\times 18=-ac\times 7x
Subtract ac\times 7x from both sides. Anything subtracted from zero gives its negation.
-bcy^{2}-18ab=-ac\times 7x
Multiply -1 and 18 to get -18.
-bcy^{2}-18ab=-7acx
Multiply -1 and 7 to get -7.
\left(-cy^{2}-18a\right)b=-7acx
Combine all terms containing b.
\frac{\left(-cy^{2}-18a\right)b}{-cy^{2}-18a}=-\frac{7acx}{-cy^{2}-18a}
Divide both sides by -y^{2}c-18a.
b=-\frac{7acx}{-cy^{2}-18a}
Dividing by -y^{2}c-18a undoes the multiplication by -y^{2}c-18a.
b=\frac{7acx}{cy^{2}+18a}
Divide -7acx by -y^{2}c-18a.
b=\frac{7acx}{cy^{2}+18a}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}