Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{x-2}{\left(x-4\right)\left(x+2\right)}-\frac{x-1}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-2x-8. Factor x^{2}-4.
-\frac{\left(x-2\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}-\frac{\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+2\right) and \left(x-2\right)\left(x+2\right) is \left(x-4\right)\left(x-2\right)\left(x+2\right). Multiply -\frac{x-2}{\left(x-4\right)\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{x-1}{\left(x-2\right)\left(x+2\right)} times \frac{x-4}{x-4}.
\frac{-\left(x-2\right)\left(x-2\right)-\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
Since -\frac{\left(x-2\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)} and \frac{\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+2x+2x-4-x^{2}+4x+x-4}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
Do the multiplications in -\left(x-2\right)\left(x-2\right)-\left(x-1\right)\left(x-4\right).
\frac{-2x^{2}+9x-8}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
Combine like terms in -x^{2}+2x+2x-4-x^{2}+4x+x-4.
\frac{-2x^{2}+9x-8}{x^{3}-4x^{2}-4x+16}
Expand \left(x-4\right)\left(x-2\right)\left(x+2\right).
-\frac{x-2}{\left(x-4\right)\left(x+2\right)}-\frac{x-1}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-2x-8. Factor x^{2}-4.
-\frac{\left(x-2\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}-\frac{\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+2\right) and \left(x-2\right)\left(x+2\right) is \left(x-4\right)\left(x-2\right)\left(x+2\right). Multiply -\frac{x-2}{\left(x-4\right)\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{x-1}{\left(x-2\right)\left(x+2\right)} times \frac{x-4}{x-4}.
\frac{-\left(x-2\right)\left(x-2\right)-\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
Since -\frac{\left(x-2\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)} and \frac{\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+2x+2x-4-x^{2}+4x+x-4}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
Do the multiplications in -\left(x-2\right)\left(x-2\right)-\left(x-1\right)\left(x-4\right).
\frac{-2x^{2}+9x-8}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
Combine like terms in -x^{2}+2x+2x-4-x^{2}+4x+x-4.
\frac{-2x^{2}+9x-8}{x^{3}-4x^{2}-4x+16}
Expand \left(x-4\right)\left(x-2\right)\left(x+2\right).