Solve for k
k=\frac{-q-1}{2}
q\neq 1
Solve for q
q=-2k-1
k\neq -1
Share
Copied to clipboard
-\frac{q+k}{-1-k}=-1
To find the opposite of 1+k, find the opposite of each term.
-\left(q+k\right)=-\left(-k-1\right)
Variable k cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by -k-1.
q+k=-k-1
Cancel out -1 on both sides.
q+k+k=-1
Add k to both sides.
q+2k=-1
Combine k and k to get 2k.
2k=-1-q
Subtract q from both sides.
2k=-q-1
The equation is in standard form.
\frac{2k}{2}=\frac{-q-1}{2}
Divide both sides by 2.
k=\frac{-q-1}{2}
Dividing by 2 undoes the multiplication by 2.
k=\frac{-q-1}{2}\text{, }k\neq -1
Variable k cannot be equal to -1.
-\frac{q+k}{-1-k}=-1
To find the opposite of 1+k, find the opposite of each term.
-\left(q+k\right)=-\left(-k-1\right)
Multiply both sides of the equation by -k-1.
q+k=-k-1
Cancel out -1 on both sides.
q=-k-1-k
Subtract k from both sides.
q=-2k-1
Combine -k and -k to get -2k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}