Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. m
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-\frac{n^{4}}{m}\right)m^{2}}{n^{2}}\times \frac{m^{2}}{n^{2}}
Divide -\frac{n^{4}}{m} by \frac{n^{2}}{m^{2}} by multiplying -\frac{n^{4}}{m} by the reciprocal of \frac{n^{2}}{m^{2}}.
\frac{\frac{-n^{4}m^{2}}{m}}{n^{2}}\times \frac{m^{2}}{n^{2}}
Express \left(-\frac{n^{4}}{m}\right)m^{2} as a single fraction.
\frac{-mn^{4}}{n^{2}}\times \frac{m^{2}}{n^{2}}
Cancel out m in both numerator and denominator.
-mn^{2}\times \frac{m^{2}}{n^{2}}
Cancel out n^{2} in both numerator and denominator.
-\frac{mm^{2}}{n^{2}}n^{2}
Express m\times \frac{m^{2}}{n^{2}} as a single fraction.
-\frac{m^{3}}{n^{2}}n^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-m^{3}
Cancel out n^{2} and n^{2}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{\left(-\frac{n^{4}}{m}\right)m^{2}}{n^{2}}\times \frac{m^{2}}{n^{2}})
Divide -\frac{n^{4}}{m} by \frac{n^{2}}{m^{2}} by multiplying -\frac{n^{4}}{m} by the reciprocal of \frac{n^{2}}{m^{2}}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{\frac{-n^{4}m^{2}}{m}}{n^{2}}\times \frac{m^{2}}{n^{2}})
Express \left(-\frac{n^{4}}{m}\right)m^{2} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{-mn^{4}}{n^{2}}\times \frac{m^{2}}{n^{2}})
Cancel out m in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}m}(-mn^{2}\times \frac{m^{2}}{n^{2}})
Cancel out n^{2} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}m}(-\frac{mm^{2}}{n^{2}}n^{2})
Express m\times \frac{m^{2}}{n^{2}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}m}(-\frac{m^{3}}{n^{2}}n^{2})
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\mathrm{d}}{\mathrm{d}m}(-m^{3})
Cancel out n^{2} and n^{2}.
3\left(-1\right)m^{3-1}
The derivative of ax^{n} is nax^{n-1}.
-3m^{3-1}
Multiply 3 times -1.
-3m^{2}
Subtract 1 from 3.