Evaluate
-\frac{a^{2}+4ab+4b^{2}+2}{\left(a+b\right)\left(a+2b\right)}
Expand
-\frac{a^{2}+4ab+4b^{2}+2}{\left(a+b\right)\left(a+2b\right)}
Share
Copied to clipboard
\frac{\left(-\frac{a-b}{a+2b}\right)\left(a^{2}+4ab+4b^{2}+2\right)}{a^{2}-b^{2}}
Divide -\frac{a-b}{a+2b} by \frac{a^{2}-b^{2}}{a^{2}+4ab+4b^{2}+2} by multiplying -\frac{a-b}{a+2b} by the reciprocal of \frac{a^{2}-b^{2}}{a^{2}+4ab+4b^{2}+2}.
\frac{\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{a+2b}}{a^{2}-b^{2}}
Express \left(-\frac{a-b}{a+2b}\right)\left(a^{2}+4ab+4b^{2}+2\right) as a single fraction.
\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{\left(a+2b\right)\left(a^{2}-b^{2}\right)}
Express \frac{\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{a+2b}}{a^{2}-b^{2}} as a single fraction.
\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{\left(a+b\right)\left(a-b\right)\left(a+2b\right)}
Factor the expressions that are not already factored.
\frac{-\left(a^{2}+4ab+4b^{2}+2\right)}{\left(a+b\right)\left(a+2b\right)}
Cancel out a-b in both numerator and denominator.
\frac{-a^{2}-4ab-4b^{2}-2}{a^{2}+3ab+2b^{2}}
Expand the expression.
\frac{\left(-\frac{a-b}{a+2b}\right)\left(a^{2}+4ab+4b^{2}+2\right)}{a^{2}-b^{2}}
Divide -\frac{a-b}{a+2b} by \frac{a^{2}-b^{2}}{a^{2}+4ab+4b^{2}+2} by multiplying -\frac{a-b}{a+2b} by the reciprocal of \frac{a^{2}-b^{2}}{a^{2}+4ab+4b^{2}+2}.
\frac{\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{a+2b}}{a^{2}-b^{2}}
Express \left(-\frac{a-b}{a+2b}\right)\left(a^{2}+4ab+4b^{2}+2\right) as a single fraction.
\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{\left(a+2b\right)\left(a^{2}-b^{2}\right)}
Express \frac{\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{a+2b}}{a^{2}-b^{2}} as a single fraction.
\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{\left(a+b\right)\left(a-b\right)\left(a+2b\right)}
Factor the expressions that are not already factored.
\frac{-\left(a^{2}+4ab+4b^{2}+2\right)}{\left(a+b\right)\left(a+2b\right)}
Cancel out a-b in both numerator and denominator.
\frac{-a^{2}-4ab-4b^{2}-2}{a^{2}+3ab+2b^{2}}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}