Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-\frac{a-b}{a+2b}\right)\left(a^{2}+4ab+4b^{2}+2\right)}{a^{2}-b^{2}}
Divide -\frac{a-b}{a+2b} by \frac{a^{2}-b^{2}}{a^{2}+4ab+4b^{2}+2} by multiplying -\frac{a-b}{a+2b} by the reciprocal of \frac{a^{2}-b^{2}}{a^{2}+4ab+4b^{2}+2}.
\frac{\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{a+2b}}{a^{2}-b^{2}}
Express \left(-\frac{a-b}{a+2b}\right)\left(a^{2}+4ab+4b^{2}+2\right) as a single fraction.
\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{\left(a+2b\right)\left(a^{2}-b^{2}\right)}
Express \frac{\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{a+2b}}{a^{2}-b^{2}} as a single fraction.
\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{\left(a+b\right)\left(a-b\right)\left(a+2b\right)}
Factor the expressions that are not already factored.
\frac{-\left(a^{2}+4ab+4b^{2}+2\right)}{\left(a+b\right)\left(a+2b\right)}
Cancel out a-b in both numerator and denominator.
\frac{-a^{2}-4ab-4b^{2}-2}{a^{2}+3ab+2b^{2}}
Expand the expression.
\frac{\left(-\frac{a-b}{a+2b}\right)\left(a^{2}+4ab+4b^{2}+2\right)}{a^{2}-b^{2}}
Divide -\frac{a-b}{a+2b} by \frac{a^{2}-b^{2}}{a^{2}+4ab+4b^{2}+2} by multiplying -\frac{a-b}{a+2b} by the reciprocal of \frac{a^{2}-b^{2}}{a^{2}+4ab+4b^{2}+2}.
\frac{\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{a+2b}}{a^{2}-b^{2}}
Express \left(-\frac{a-b}{a+2b}\right)\left(a^{2}+4ab+4b^{2}+2\right) as a single fraction.
\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{\left(a+2b\right)\left(a^{2}-b^{2}\right)}
Express \frac{\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{a+2b}}{a^{2}-b^{2}} as a single fraction.
\frac{-\left(a-b\right)\left(a^{2}+4ab+4b^{2}+2\right)}{\left(a+b\right)\left(a-b\right)\left(a+2b\right)}
Factor the expressions that are not already factored.
\frac{-\left(a^{2}+4ab+4b^{2}+2\right)}{\left(a+b\right)\left(a+2b\right)}
Cancel out a-b in both numerator and denominator.
\frac{-a^{2}-4ab-4b^{2}-2}{a^{2}+3ab+2b^{2}}
Expand the expression.