Solve for w
w = \frac{36}{35} = 1\frac{1}{35} \approx 1.028571429
Share
Copied to clipboard
-\frac{1}{2}w=-\frac{9}{5}+\frac{9}{7}
Add \frac{9}{7} to both sides.
-\frac{1}{2}w=-\frac{63}{35}+\frac{45}{35}
Least common multiple of 5 and 7 is 35. Convert -\frac{9}{5} and \frac{9}{7} to fractions with denominator 35.
-\frac{1}{2}w=\frac{-63+45}{35}
Since -\frac{63}{35} and \frac{45}{35} have the same denominator, add them by adding their numerators.
-\frac{1}{2}w=-\frac{18}{35}
Add -63 and 45 to get -18.
w=-\frac{18}{35}\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}.
w=\frac{-18\left(-2\right)}{35}
Express -\frac{18}{35}\left(-2\right) as a single fraction.
w=\frac{36}{35}
Multiply -18 and -2 to get 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}