Evaluate
-63
Factor
-63
Share
Copied to clipboard
-\frac{81}{2}+9\left(-\frac{9}{2}\right)+18
Calculate 9 to the power of 2 and get 81.
-\frac{81}{2}+\frac{9\left(-9\right)}{2}+18
Express 9\left(-\frac{9}{2}\right) as a single fraction.
-\frac{81}{2}+\frac{-81}{2}+18
Multiply 9 and -9 to get -81.
-\frac{81}{2}-\frac{81}{2}+18
Fraction \frac{-81}{2} can be rewritten as -\frac{81}{2} by extracting the negative sign.
\frac{-81-81}{2}+18
Since -\frac{81}{2} and \frac{81}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-162}{2}+18
Subtract 81 from -81 to get -162.
-81+18
Divide -162 by 2 to get -81.
-63
Add -81 and 18 to get -63.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}