Solve for x
x=-\frac{24}{35}\approx -0.685714286
Graph
Share
Copied to clipboard
-\frac{1}{2}x=-\frac{4}{5}+\frac{8}{7}
Add \frac{8}{7} to both sides.
-\frac{1}{2}x=-\frac{28}{35}+\frac{40}{35}
Least common multiple of 5 and 7 is 35. Convert -\frac{4}{5} and \frac{8}{7} to fractions with denominator 35.
-\frac{1}{2}x=\frac{-28+40}{35}
Since -\frac{28}{35} and \frac{40}{35} have the same denominator, add them by adding their numerators.
-\frac{1}{2}x=\frac{12}{35}
Add -28 and 40 to get 12.
x=\frac{12}{35}\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}.
x=\frac{12\left(-2\right)}{35}
Express \frac{12}{35}\left(-2\right) as a single fraction.
x=\frac{-24}{35}
Multiply 12 and -2 to get -24.
x=-\frac{24}{35}
Fraction \frac{-24}{35} can be rewritten as -\frac{24}{35} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}