Solve for x
x=\frac{-\sqrt{761}-5}{46}\approx -0.708396271
x=\frac{\sqrt{761}-5}{46}\approx 0.491004966
Graph
Share
Copied to clipboard
-\left(-2-3x\right)\left(7x-3\right)-x\left(4x-1\right)=-\left(3x-2\right)\left(2x+1\right)
Variable x cannot be equal to any of the values -\frac{2}{3},0,\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by x\left(3x-2\right)\left(3x+2\right), the least common multiple of 2x-3x^{2},9x^{2}-4,2x+3x^{2}.
-\left(-5x+6-21x^{2}\right)-x\left(4x-1\right)=-\left(3x-2\right)\left(2x+1\right)
Use the distributive property to multiply -2-3x by 7x-3 and combine like terms.
5x-6+21x^{2}-x\left(4x-1\right)=-\left(3x-2\right)\left(2x+1\right)
To find the opposite of -5x+6-21x^{2}, find the opposite of each term.
5x-6+21x^{2}-\left(4x^{2}-x\right)=-\left(3x-2\right)\left(2x+1\right)
Use the distributive property to multiply x by 4x-1.
5x-6+21x^{2}-4x^{2}+x=-\left(3x-2\right)\left(2x+1\right)
To find the opposite of 4x^{2}-x, find the opposite of each term.
5x-6+17x^{2}+x=-\left(3x-2\right)\left(2x+1\right)
Combine 21x^{2} and -4x^{2} to get 17x^{2}.
6x-6+17x^{2}=-\left(3x-2\right)\left(2x+1\right)
Combine 5x and x to get 6x.
6x-6+17x^{2}=-\left(6x^{2}-x-2\right)
Use the distributive property to multiply 3x-2 by 2x+1 and combine like terms.
6x-6+17x^{2}=-6x^{2}+x+2
To find the opposite of 6x^{2}-x-2, find the opposite of each term.
6x-6+17x^{2}+6x^{2}=x+2
Add 6x^{2} to both sides.
6x-6+23x^{2}=x+2
Combine 17x^{2} and 6x^{2} to get 23x^{2}.
6x-6+23x^{2}-x=2
Subtract x from both sides.
5x-6+23x^{2}=2
Combine 6x and -x to get 5x.
5x-6+23x^{2}-2=0
Subtract 2 from both sides.
5x-8+23x^{2}=0
Subtract 2 from -6 to get -8.
23x^{2}+5x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\times 23\left(-8\right)}}{2\times 23}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 23 for a, 5 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 23\left(-8\right)}}{2\times 23}
Square 5.
x=\frac{-5±\sqrt{25-92\left(-8\right)}}{2\times 23}
Multiply -4 times 23.
x=\frac{-5±\sqrt{25+736}}{2\times 23}
Multiply -92 times -8.
x=\frac{-5±\sqrt{761}}{2\times 23}
Add 25 to 736.
x=\frac{-5±\sqrt{761}}{46}
Multiply 2 times 23.
x=\frac{\sqrt{761}-5}{46}
Now solve the equation x=\frac{-5±\sqrt{761}}{46} when ± is plus. Add -5 to \sqrt{761}.
x=\frac{-\sqrt{761}-5}{46}
Now solve the equation x=\frac{-5±\sqrt{761}}{46} when ± is minus. Subtract \sqrt{761} from -5.
x=\frac{\sqrt{761}-5}{46} x=\frac{-\sqrt{761}-5}{46}
The equation is now solved.
-\left(-2-3x\right)\left(7x-3\right)-x\left(4x-1\right)=-\left(3x-2\right)\left(2x+1\right)
Variable x cannot be equal to any of the values -\frac{2}{3},0,\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by x\left(3x-2\right)\left(3x+2\right), the least common multiple of 2x-3x^{2},9x^{2}-4,2x+3x^{2}.
-\left(-5x+6-21x^{2}\right)-x\left(4x-1\right)=-\left(3x-2\right)\left(2x+1\right)
Use the distributive property to multiply -2-3x by 7x-3 and combine like terms.
5x-6+21x^{2}-x\left(4x-1\right)=-\left(3x-2\right)\left(2x+1\right)
To find the opposite of -5x+6-21x^{2}, find the opposite of each term.
5x-6+21x^{2}-\left(4x^{2}-x\right)=-\left(3x-2\right)\left(2x+1\right)
Use the distributive property to multiply x by 4x-1.
5x-6+21x^{2}-4x^{2}+x=-\left(3x-2\right)\left(2x+1\right)
To find the opposite of 4x^{2}-x, find the opposite of each term.
5x-6+17x^{2}+x=-\left(3x-2\right)\left(2x+1\right)
Combine 21x^{2} and -4x^{2} to get 17x^{2}.
6x-6+17x^{2}=-\left(3x-2\right)\left(2x+1\right)
Combine 5x and x to get 6x.
6x-6+17x^{2}=-\left(6x^{2}-x-2\right)
Use the distributive property to multiply 3x-2 by 2x+1 and combine like terms.
6x-6+17x^{2}=-6x^{2}+x+2
To find the opposite of 6x^{2}-x-2, find the opposite of each term.
6x-6+17x^{2}+6x^{2}=x+2
Add 6x^{2} to both sides.
6x-6+23x^{2}=x+2
Combine 17x^{2} and 6x^{2} to get 23x^{2}.
6x-6+23x^{2}-x=2
Subtract x from both sides.
5x-6+23x^{2}=2
Combine 6x and -x to get 5x.
5x+23x^{2}=2+6
Add 6 to both sides.
5x+23x^{2}=8
Add 2 and 6 to get 8.
23x^{2}+5x=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{23x^{2}+5x}{23}=\frac{8}{23}
Divide both sides by 23.
x^{2}+\frac{5}{23}x=\frac{8}{23}
Dividing by 23 undoes the multiplication by 23.
x^{2}+\frac{5}{23}x+\left(\frac{5}{46}\right)^{2}=\frac{8}{23}+\left(\frac{5}{46}\right)^{2}
Divide \frac{5}{23}, the coefficient of the x term, by 2 to get \frac{5}{46}. Then add the square of \frac{5}{46} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{23}x+\frac{25}{2116}=\frac{8}{23}+\frac{25}{2116}
Square \frac{5}{46} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{23}x+\frac{25}{2116}=\frac{761}{2116}
Add \frac{8}{23} to \frac{25}{2116} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{46}\right)^{2}=\frac{761}{2116}
Factor x^{2}+\frac{5}{23}x+\frac{25}{2116}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{46}\right)^{2}}=\sqrt{\frac{761}{2116}}
Take the square root of both sides of the equation.
x+\frac{5}{46}=\frac{\sqrt{761}}{46} x+\frac{5}{46}=-\frac{\sqrt{761}}{46}
Simplify.
x=\frac{\sqrt{761}-5}{46} x=\frac{-\sqrt{761}-5}{46}
Subtract \frac{5}{46} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}