Solve for x
x = -\frac{135}{2} = -67\frac{1}{2} = -67.5
Graph
Share
Copied to clipboard
-\frac{7}{9}x+1=-\frac{4}{5}x-\frac{1}{2}
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
-\frac{7}{9}x+1+\frac{4}{5}x=-\frac{1}{2}
Add \frac{4}{5}x to both sides.
\frac{1}{45}x+1=-\frac{1}{2}
Combine -\frac{7}{9}x and \frac{4}{5}x to get \frac{1}{45}x.
\frac{1}{45}x=-\frac{1}{2}-1
Subtract 1 from both sides.
\frac{1}{45}x=-\frac{1}{2}-\frac{2}{2}
Convert 1 to fraction \frac{2}{2}.
\frac{1}{45}x=\frac{-1-2}{2}
Since -\frac{1}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{45}x=-\frac{3}{2}
Subtract 2 from -1 to get -3.
x=-\frac{3}{2}\times 45
Multiply both sides by 45, the reciprocal of \frac{1}{45}.
x=\frac{-3\times 45}{2}
Express -\frac{3}{2}\times 45 as a single fraction.
x=\frac{-135}{2}
Multiply -3 and 45 to get -135.
x=-\frac{135}{2}
Fraction \frac{-135}{2} can be rewritten as -\frac{135}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}