Solve for x
x = \frac{115}{18} = 6\frac{7}{18} \approx 6.388888889
Graph
Share
Copied to clipboard
-126x+18\left(2\times 5+1\right)=-\left(6\times 90+67\right)
Multiply both sides of the equation by 90, the least common multiple of 5,90.
-126x+18\left(10+1\right)=-\left(6\times 90+67\right)
Multiply 2 and 5 to get 10.
-126x+18\times 11=-\left(6\times 90+67\right)
Add 10 and 1 to get 11.
-126x+198=-\left(6\times 90+67\right)
Multiply 18 and 11 to get 198.
-126x+198=-\left(540+67\right)
Multiply 6 and 90 to get 540.
-126x+198=-607
Add 540 and 67 to get 607.
-126x=-607-198
Subtract 198 from both sides.
-126x=-805
Subtract 198 from -607 to get -805.
x=\frac{-805}{-126}
Divide both sides by -126.
x=\frac{115}{18}
Reduce the fraction \frac{-805}{-126} to lowest terms by extracting and canceling out -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}