Solve for u
u = -\frac{38}{15} = -2\frac{8}{15} \approx -2.533333333
Share
Copied to clipboard
-\frac{1}{2}u-\frac{8}{3}=-\frac{7}{5}
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}u=-\frac{7}{5}+\frac{8}{3}
Add \frac{8}{3} to both sides.
-\frac{1}{2}u=-\frac{21}{15}+\frac{40}{15}
Least common multiple of 5 and 3 is 15. Convert -\frac{7}{5} and \frac{8}{3} to fractions with denominator 15.
-\frac{1}{2}u=\frac{-21+40}{15}
Since -\frac{21}{15} and \frac{40}{15} have the same denominator, add them by adding their numerators.
-\frac{1}{2}u=\frac{19}{15}
Add -21 and 40 to get 19.
u=\frac{19}{15}\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}.
u=\frac{19\left(-2\right)}{15}
Express \frac{19}{15}\left(-2\right) as a single fraction.
u=\frac{-38}{15}
Multiply 19 and -2 to get -38.
u=-\frac{38}{15}
Fraction \frac{-38}{15} can be rewritten as -\frac{38}{15} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}