Solve for v
v=-\frac{38}{51}\approx -0.745098039
Share
Copied to clipboard
-\frac{7}{4}v+\frac{5}{2}+6v=-\frac{2}{3}
Add 6v to both sides.
\frac{17}{4}v+\frac{5}{2}=-\frac{2}{3}
Combine -\frac{7}{4}v and 6v to get \frac{17}{4}v.
\frac{17}{4}v=-\frac{2}{3}-\frac{5}{2}
Subtract \frac{5}{2} from both sides.
\frac{17}{4}v=-\frac{4}{6}-\frac{15}{6}
Least common multiple of 3 and 2 is 6. Convert -\frac{2}{3} and \frac{5}{2} to fractions with denominator 6.
\frac{17}{4}v=\frac{-4-15}{6}
Since -\frac{4}{6} and \frac{15}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{4}v=-\frac{19}{6}
Subtract 15 from -4 to get -19.
v=-\frac{19}{6}\times \frac{4}{17}
Multiply both sides by \frac{4}{17}, the reciprocal of \frac{17}{4}.
v=\frac{-19\times 4}{6\times 17}
Multiply -\frac{19}{6} times \frac{4}{17} by multiplying numerator times numerator and denominator times denominator.
v=\frac{-76}{102}
Do the multiplications in the fraction \frac{-19\times 4}{6\times 17}.
v=-\frac{38}{51}
Reduce the fraction \frac{-76}{102} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}