Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

-\frac{7}{3}a\left(-a^{2}\right)-a^{2}\left(-\frac{1}{3}\right)\times 2a+\frac{2}{5}a\left(-5\right)a^{2}+a^{3}
Multiply a and a to get a^{2}.
-\frac{7}{3}a\left(-a^{2}\right)-a^{3}\left(-\frac{1}{3}\right)\times 2+\frac{2}{5}a\left(-5\right)a^{2}+a^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
-\frac{7}{3}a\left(-a^{2}\right)-a^{3}\left(-\frac{1}{3}\right)\times 2+\frac{2}{5}a^{3}\left(-5\right)+a^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{7}{3}aa^{2}-a^{3}\left(-\frac{1}{3}\right)\times 2+\frac{2}{5}a^{3}\left(-5\right)+a^{3}
Multiply -\frac{7}{3} and -1 to get \frac{7}{3}.
\frac{7}{3}a^{3}-a^{3}\left(-\frac{1}{3}\right)\times 2+\frac{2}{5}a^{3}\left(-5\right)+a^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{7}{3}a^{3}-a^{3}\left(-\frac{2}{3}\right)+\frac{2}{5}a^{3}\left(-5\right)+a^{3}
Multiply -\frac{1}{3} and 2 to get -\frac{2}{3}.
3a^{3}+\frac{2}{5}a^{3}\left(-5\right)+a^{3}
Combine \frac{7}{3}a^{3} and -a^{3}\left(-\frac{2}{3}\right) to get 3a^{3}.
3a^{3}-2a^{3}+a^{3}
Multiply \frac{2}{5} and -5 to get -2.
a^{3}+a^{3}
Combine 3a^{3} and -2a^{3} to get a^{3}.
2a^{3}
Combine a^{3} and a^{3} to get 2a^{3}.
\frac{\mathrm{d}}{\mathrm{d}a}(-\frac{7}{3}a\left(-a^{2}\right)-a^{2}\left(-\frac{1}{3}\right)\times 2a+\frac{2}{5}a\left(-5\right)a^{2}+a^{3})
Multiply a and a to get a^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(-\frac{7}{3}a\left(-a^{2}\right)-a^{3}\left(-\frac{1}{3}\right)\times 2+\frac{2}{5}a\left(-5\right)a^{2}+a^{3})
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}a}(-\frac{7}{3}a\left(-a^{2}\right)-a^{3}\left(-\frac{1}{3}\right)\times 2+\frac{2}{5}a^{3}\left(-5\right)+a^{3})
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{7}{3}aa^{2}-a^{3}\left(-\frac{1}{3}\right)\times 2+\frac{2}{5}a^{3}\left(-5\right)+a^{3})
Multiply -\frac{7}{3} and -1 to get \frac{7}{3}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{7}{3}a^{3}-a^{3}\left(-\frac{1}{3}\right)\times 2+\frac{2}{5}a^{3}\left(-5\right)+a^{3})
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{7}{3}a^{3}-a^{3}\left(-\frac{2}{3}\right)+\frac{2}{5}a^{3}\left(-5\right)+a^{3})
Multiply -\frac{1}{3} and 2 to get -\frac{2}{3}.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{3}+\frac{2}{5}a^{3}\left(-5\right)+a^{3})
Combine \frac{7}{3}a^{3} and -a^{3}\left(-\frac{2}{3}\right) to get 3a^{3}.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{3}-2a^{3}+a^{3})
Multiply \frac{2}{5} and -5 to get -2.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{3}+a^{3})
Combine 3a^{3} and -2a^{3} to get a^{3}.
\frac{\mathrm{d}}{\mathrm{d}a}(2a^{3})
Combine a^{3} and a^{3} to get 2a^{3}.
3\times 2a^{3-1}
The derivative of ax^{n} is nax^{n-1}.
6a^{3-1}
Multiply 3 times 2.
6a^{2}
Subtract 1 from 3.