Solve for v
v = -\frac{9}{7} = -1\frac{2}{7} \approx -1.285714286
Share
Copied to clipboard
-\frac{7}{2}v-5-\frac{7}{3}v=\frac{5}{2}
Subtract \frac{7}{3}v from both sides.
-\frac{35}{6}v-5=\frac{5}{2}
Combine -\frac{7}{2}v and -\frac{7}{3}v to get -\frac{35}{6}v.
-\frac{35}{6}v=\frac{5}{2}+5
Add 5 to both sides.
-\frac{35}{6}v=\frac{5}{2}+\frac{10}{2}
Convert 5 to fraction \frac{10}{2}.
-\frac{35}{6}v=\frac{5+10}{2}
Since \frac{5}{2} and \frac{10}{2} have the same denominator, add them by adding their numerators.
-\frac{35}{6}v=\frac{15}{2}
Add 5 and 10 to get 15.
v=\frac{15}{2}\left(-\frac{6}{35}\right)
Multiply both sides by -\frac{6}{35}, the reciprocal of -\frac{35}{6}.
v=\frac{15\left(-6\right)}{2\times 35}
Multiply \frac{15}{2} times -\frac{6}{35} by multiplying numerator times numerator and denominator times denominator.
v=\frac{-90}{70}
Do the multiplications in the fraction \frac{15\left(-6\right)}{2\times 35}.
v=-\frac{9}{7}
Reduce the fraction \frac{-90}{70} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}