Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-\frac{1}{2}\log_{2}\left(\frac{7}{14}\right)-\frac{7}{14}\log_{2}\left(\frac{7}{14}\right)
Reduce the fraction \frac{7}{14} to lowest terms by extracting and canceling out 7.
-\frac{1}{2}\log_{2}\left(\frac{1}{2}\right)-\frac{7}{14}\log_{2}\left(\frac{7}{14}\right)
Reduce the fraction \frac{7}{14} to lowest terms by extracting and canceling out 7.
-\frac{1}{2}\left(-1\right)-\frac{7}{14}\log_{2}\left(\frac{7}{14}\right)
The base 2 logarithm of \frac{1}{2} is -1.
\frac{1}{2}-\frac{7}{14}\log_{2}\left(\frac{7}{14}\right)
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
\frac{1}{2}-\frac{1}{2}\log_{2}\left(\frac{7}{14}\right)
Reduce the fraction \frac{7}{14} to lowest terms by extracting and canceling out 7.
\frac{1}{2}-\frac{1}{2}\log_{2}\left(\frac{1}{2}\right)
Reduce the fraction \frac{7}{14} to lowest terms by extracting and canceling out 7.
\frac{1}{2}-\frac{1}{2}\left(-1\right)
The base 2 logarithm of \frac{1}{2} is -1.
\frac{1}{2}-\left(-\frac{1}{2}\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{1}{2}+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
1
Add \frac{1}{2} and \frac{1}{2} to get 1.