Solve for x
x\geq \frac{7}{159}
Graph
Share
Copied to clipboard
-\frac{6}{7}x+\frac{4}{9}-\frac{5}{3}x\leq \frac{1}{3}
Subtract \frac{5}{3}x from both sides.
-\frac{53}{21}x+\frac{4}{9}\leq \frac{1}{3}
Combine -\frac{6}{7}x and -\frac{5}{3}x to get -\frac{53}{21}x.
-\frac{53}{21}x\leq \frac{1}{3}-\frac{4}{9}
Subtract \frac{4}{9} from both sides.
-\frac{53}{21}x\leq \frac{3}{9}-\frac{4}{9}
Least common multiple of 3 and 9 is 9. Convert \frac{1}{3} and \frac{4}{9} to fractions with denominator 9.
-\frac{53}{21}x\leq \frac{3-4}{9}
Since \frac{3}{9} and \frac{4}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{53}{21}x\leq -\frac{1}{9}
Subtract 4 from 3 to get -1.
x\geq -\frac{1}{9}\left(-\frac{21}{53}\right)
Multiply both sides by -\frac{21}{53}, the reciprocal of -\frac{53}{21}. Since -\frac{53}{21} is negative, the inequality direction is changed.
x\geq \frac{-\left(-21\right)}{9\times 53}
Multiply -\frac{1}{9} times -\frac{21}{53} by multiplying numerator times numerator and denominator times denominator.
x\geq \frac{21}{477}
Do the multiplications in the fraction \frac{-\left(-21\right)}{9\times 53}.
x\geq \frac{7}{159}
Reduce the fraction \frac{21}{477} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}