Solve for t
t = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
t=0
Share
Copied to clipboard
t\left(-\frac{6}{125}t+\frac{4}{25}\right)=0
Factor out t.
t=0 t=\frac{10}{3}
To find equation solutions, solve t=0 and -\frac{6t}{125}+\frac{4}{25}=0.
-\frac{6}{125}t^{2}+\frac{4}{25}t=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\frac{4}{25}±\sqrt{\left(\frac{4}{25}\right)^{2}}}{2\left(-\frac{6}{125}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{6}{125} for a, \frac{4}{25} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\frac{4}{25}±\frac{4}{25}}{2\left(-\frac{6}{125}\right)}
Take the square root of \left(\frac{4}{25}\right)^{2}.
t=\frac{-\frac{4}{25}±\frac{4}{25}}{-\frac{12}{125}}
Multiply 2 times -\frac{6}{125}.
t=\frac{0}{-\frac{12}{125}}
Now solve the equation t=\frac{-\frac{4}{25}±\frac{4}{25}}{-\frac{12}{125}} when ± is plus. Add -\frac{4}{25} to \frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=0
Divide 0 by -\frac{12}{125} by multiplying 0 by the reciprocal of -\frac{12}{125}.
t=-\frac{\frac{8}{25}}{-\frac{12}{125}}
Now solve the equation t=\frac{-\frac{4}{25}±\frac{4}{25}}{-\frac{12}{125}} when ± is minus. Subtract \frac{4}{25} from -\frac{4}{25} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{10}{3}
Divide -\frac{8}{25} by -\frac{12}{125} by multiplying -\frac{8}{25} by the reciprocal of -\frac{12}{125}.
t=0 t=\frac{10}{3}
The equation is now solved.
-\frac{6}{125}t^{2}+\frac{4}{25}t=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{6}{125}t^{2}+\frac{4}{25}t}{-\frac{6}{125}}=\frac{0}{-\frac{6}{125}}
Divide both sides of the equation by -\frac{6}{125}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{\frac{4}{25}}{-\frac{6}{125}}t=\frac{0}{-\frac{6}{125}}
Dividing by -\frac{6}{125} undoes the multiplication by -\frac{6}{125}.
t^{2}-\frac{10}{3}t=\frac{0}{-\frac{6}{125}}
Divide \frac{4}{25} by -\frac{6}{125} by multiplying \frac{4}{25} by the reciprocal of -\frac{6}{125}.
t^{2}-\frac{10}{3}t=0
Divide 0 by -\frac{6}{125} by multiplying 0 by the reciprocal of -\frac{6}{125}.
t^{2}-\frac{10}{3}t+\left(-\frac{5}{3}\right)^{2}=\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{10}{3}t+\frac{25}{9}=\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
\left(t-\frac{5}{3}\right)^{2}=\frac{25}{9}
Factor t^{2}-\frac{10}{3}t+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
Take the square root of both sides of the equation.
t-\frac{5}{3}=\frac{5}{3} t-\frac{5}{3}=-\frac{5}{3}
Simplify.
t=\frac{10}{3} t=0
Add \frac{5}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}