Evaluate
-\frac{35}{12}\approx -2.916666667
Factor
-\frac{35}{12} = -2\frac{11}{12} = -2.9166666666666665
Share
Copied to clipboard
\frac{-\frac{5}{6}}{-3+\frac{7}{2}}-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Divide 1 by 1 to get 1.
\frac{-\frac{5}{6}}{-\frac{6}{2}+\frac{7}{2}}-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Convert -3 to fraction -\frac{6}{2}.
\frac{-\frac{5}{6}}{\frac{-6+7}{2}}-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Since -\frac{6}{2} and \frac{7}{2} have the same denominator, add them by adding their numerators.
\frac{-\frac{5}{6}}{\frac{1}{2}}-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Add -6 and 7 to get 1.
-\frac{5}{6}\times 2-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Divide -\frac{5}{6} by \frac{1}{2} by multiplying -\frac{5}{6} by the reciprocal of \frac{1}{2}.
\frac{-5\times 2}{6}-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Express -\frac{5}{6}\times 2 as a single fraction.
\frac{-10}{6}-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Multiply -5 and 2 to get -10.
-\frac{5}{3}-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Reduce the fraction \frac{-10}{6} to lowest terms by extracting and canceling out 2.
-\frac{5}{3}-\frac{1}{2}\left(-3\left(\frac{1}{2}-\frac{2}{2}\right)+1\right)
Convert 1 to fraction \frac{2}{2}.
-\frac{5}{3}-\frac{1}{2}\left(-3\times \frac{1-2}{2}+1\right)
Since \frac{1}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{3}-\frac{1}{2}\left(-3\left(-\frac{1}{2}\right)+1\right)
Subtract 2 from 1 to get -1.
-\frac{5}{3}-\frac{1}{2}\left(\frac{-3\left(-1\right)}{2}+1\right)
Express -3\left(-\frac{1}{2}\right) as a single fraction.
-\frac{5}{3}-\frac{1}{2}\left(\frac{3}{2}+1\right)
Multiply -3 and -1 to get 3.
-\frac{5}{3}-\frac{1}{2}\left(\frac{3}{2}+\frac{2}{2}\right)
Convert 1 to fraction \frac{2}{2}.
-\frac{5}{3}-\frac{1}{2}\times \frac{3+2}{2}
Since \frac{3}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
-\frac{5}{3}-\frac{1}{2}\times \frac{5}{2}
Add 3 and 2 to get 5.
-\frac{5}{3}-\frac{1\times 5}{2\times 2}
Multiply \frac{1}{2} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{5}{3}-\frac{5}{4}
Do the multiplications in the fraction \frac{1\times 5}{2\times 2}.
-\frac{20}{12}-\frac{15}{12}
Least common multiple of 3 and 4 is 12. Convert -\frac{5}{3} and \frac{5}{4} to fractions with denominator 12.
\frac{-20-15}{12}
Since -\frac{20}{12} and \frac{15}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{35}{12}
Subtract 15 from -20 to get -35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}