Evaluate
-\frac{47}{14}\approx -3.357142857
Factor
-\frac{47}{14} = -3\frac{5}{14} = -3.357142857142857
Share
Copied to clipboard
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\left(\frac{1}{2}\right)^{4}\left(-32\right)\right)}{-\frac{2\times 5+4}{5}}
Calculate -\frac{3}{5} to the power of 2 and get \frac{9}{25}.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\frac{1}{16}\left(-32\right)\right)}{-\frac{2\times 5+4}{5}}
Calculate \frac{1}{2} to the power of 4 and get \frac{1}{16}.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\frac{-32}{16}\right)}{-\frac{2\times 5+4}{5}}
Multiply \frac{1}{16} and -32 to get \frac{-32}{16}.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\left(-2\right)\right)}{-\frac{2\times 5+4}{5}}
Divide -32 by 16 to get -2.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}+2\right)}{-\frac{2\times 5+4}{5}}
The opposite of -2 is 2.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}+\frac{50}{25}\right)}{-\frac{2\times 5+4}{5}}
Convert 2 to fraction \frac{50}{25}.
-\frac{5}{4}+\frac{\frac{5}{2}\times \frac{9+50}{25}}{-\frac{2\times 5+4}{5}}
Since \frac{9}{25} and \frac{50}{25} have the same denominator, add them by adding their numerators.
-\frac{5}{4}+\frac{\frac{5}{2}\times \frac{59}{25}}{-\frac{2\times 5+4}{5}}
Add 9 and 50 to get 59.
-\frac{5}{4}+\frac{\frac{5\times 59}{2\times 25}}{-\frac{2\times 5+4}{5}}
Multiply \frac{5}{2} times \frac{59}{25} by multiplying numerator times numerator and denominator times denominator.
-\frac{5}{4}+\frac{\frac{295}{50}}{-\frac{2\times 5+4}{5}}
Do the multiplications in the fraction \frac{5\times 59}{2\times 25}.
-\frac{5}{4}+\frac{\frac{59}{10}}{-\frac{2\times 5+4}{5}}
Reduce the fraction \frac{295}{50} to lowest terms by extracting and canceling out 5.
-\frac{5}{4}+\frac{\frac{59}{10}}{-\frac{10+4}{5}}
Multiply 2 and 5 to get 10.
-\frac{5}{4}+\frac{\frac{59}{10}}{-\frac{14}{5}}
Add 10 and 4 to get 14.
-\frac{5}{4}+\frac{59}{10}\left(-\frac{5}{14}\right)
Divide \frac{59}{10} by -\frac{14}{5} by multiplying \frac{59}{10} by the reciprocal of -\frac{14}{5}.
-\frac{5}{4}+\frac{59\left(-5\right)}{10\times 14}
Multiply \frac{59}{10} times -\frac{5}{14} by multiplying numerator times numerator and denominator times denominator.
-\frac{5}{4}+\frac{-295}{140}
Do the multiplications in the fraction \frac{59\left(-5\right)}{10\times 14}.
-\frac{5}{4}-\frac{59}{28}
Reduce the fraction \frac{-295}{140} to lowest terms by extracting and canceling out 5.
-\frac{35}{28}-\frac{59}{28}
Least common multiple of 4 and 28 is 28. Convert -\frac{5}{4} and \frac{59}{28} to fractions with denominator 28.
\frac{-35-59}{28}
Since -\frac{35}{28} and \frac{59}{28} have the same denominator, subtract them by subtracting their numerators.
\frac{-94}{28}
Subtract 59 from -35 to get -94.
-\frac{47}{14}
Reduce the fraction \frac{-94}{28} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}