Evaluate
-1.75
Factor
-1.75
Share
Copied to clipboard
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\left(\frac{1}{2}\right)^{4}\left(-3.2\right)\right)}{-\frac{2\times 5+4}{5}}
Calculate -\frac{3}{5} to the power of 2 and get \frac{9}{25}.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\frac{1}{16}\left(-3.2\right)\right)}{-\frac{2\times 5+4}{5}}
Calculate \frac{1}{2} to the power of 4 and get \frac{1}{16}.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\frac{1}{16}\left(-\frac{16}{5}\right)\right)}{-\frac{2\times 5+4}{5}}
Convert decimal number -3.2 to fraction -\frac{32}{10}. Reduce the fraction -\frac{32}{10} to lowest terms by extracting and canceling out 2.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\frac{1\left(-16\right)}{16\times 5}\right)}{-\frac{2\times 5+4}{5}}
Multiply \frac{1}{16} times -\frac{16}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\frac{-16}{80}\right)}{-\frac{2\times 5+4}{5}}
Do the multiplications in the fraction \frac{1\left(-16\right)}{16\times 5}.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\left(-\frac{1}{5}\right)\right)}{-\frac{2\times 5+4}{5}}
Reduce the fraction \frac{-16}{80} to lowest terms by extracting and canceling out 16.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}+\frac{1}{5}\right)}{-\frac{2\times 5+4}{5}}
The opposite of -\frac{1}{5} is \frac{1}{5}.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}+\frac{5}{25}\right)}{-\frac{2\times 5+4}{5}}
Least common multiple of 25 and 5 is 25. Convert \frac{9}{25} and \frac{1}{5} to fractions with denominator 25.
-\frac{5}{4}+\frac{\frac{5}{2}\times \frac{9+5}{25}}{-\frac{2\times 5+4}{5}}
Since \frac{9}{25} and \frac{5}{25} have the same denominator, add them by adding their numerators.
-\frac{5}{4}+\frac{\frac{5}{2}\times \frac{14}{25}}{-\frac{2\times 5+4}{5}}
Add 9 and 5 to get 14.
-\frac{5}{4}+\frac{\frac{5\times 14}{2\times 25}}{-\frac{2\times 5+4}{5}}
Multiply \frac{5}{2} times \frac{14}{25} by multiplying numerator times numerator and denominator times denominator.
-\frac{5}{4}+\frac{\frac{70}{50}}{-\frac{2\times 5+4}{5}}
Do the multiplications in the fraction \frac{5\times 14}{2\times 25}.
-\frac{5}{4}+\frac{\frac{7}{5}}{-\frac{2\times 5+4}{5}}
Reduce the fraction \frac{70}{50} to lowest terms by extracting and canceling out 10.
-\frac{5}{4}+\frac{\frac{7}{5}}{-\frac{10+4}{5}}
Multiply 2 and 5 to get 10.
-\frac{5}{4}+\frac{\frac{7}{5}}{-\frac{14}{5}}
Add 10 and 4 to get 14.
-\frac{5}{4}+\frac{7}{5}\left(-\frac{5}{14}\right)
Divide \frac{7}{5} by -\frac{14}{5} by multiplying \frac{7}{5} by the reciprocal of -\frac{14}{5}.
-\frac{5}{4}+\frac{7\left(-5\right)}{5\times 14}
Multiply \frac{7}{5} times -\frac{5}{14} by multiplying numerator times numerator and denominator times denominator.
-\frac{5}{4}+\frac{-35}{70}
Do the multiplications in the fraction \frac{7\left(-5\right)}{5\times 14}.
-\frac{5}{4}-\frac{1}{2}
Reduce the fraction \frac{-35}{70} to lowest terms by extracting and canceling out 35.
-\frac{5}{4}-\frac{2}{4}
Least common multiple of 4 and 2 is 4. Convert -\frac{5}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{-5-2}{4}
Since -\frac{5}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{4}
Subtract 2 from -5 to get -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}