Evaluate
\frac{101}{180}\approx 0.561111111
Factor
\frac{101}{2 ^ {2} \cdot 3 ^ {2} \cdot 5} = 0.5611111111111111
Share
Copied to clipboard
-\frac{5}{36}+\frac{7}{10}
The opposite of -\frac{7}{10} is \frac{7}{10}.
-\frac{25}{180}+\frac{126}{180}
Least common multiple of 36 and 10 is 180. Convert -\frac{5}{36} and \frac{7}{10} to fractions with denominator 180.
\frac{-25+126}{180}
Since -\frac{25}{180} and \frac{126}{180} have the same denominator, add them by adding their numerators.
\frac{101}{180}
Add -25 and 126 to get 101.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}