Solve for x_2
x_{2}=x_{3}-\frac{16}{5}
Solve for x_3
x_{3}=x_{2}+\frac{16}{5}
Quiz
Linear Equation
- \frac { 5 } { 3 } x _ { 2 } + \frac { 5 } { 3 } x _ { 3 } = \frac { 16 } { 3 }
Share
Copied to clipboard
-\frac{5}{3}x_{2}=\frac{16}{3}-\frac{5}{3}x_{3}
Subtract \frac{5}{3}x_{3} from both sides.
-\frac{5}{3}x_{2}=\frac{16-5x_{3}}{3}
The equation is in standard form.
\frac{-\frac{5}{3}x_{2}}{-\frac{5}{3}}=\frac{16-5x_{3}}{-\frac{5}{3}\times 3}
Divide both sides of the equation by -\frac{5}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x_{2}=\frac{16-5x_{3}}{-\frac{5}{3}\times 3}
Dividing by -\frac{5}{3} undoes the multiplication by -\frac{5}{3}.
x_{2}=x_{3}-\frac{16}{5}
Divide \frac{16-5x_{3}}{3} by -\frac{5}{3} by multiplying \frac{16-5x_{3}}{3} by the reciprocal of -\frac{5}{3}.
\frac{5}{3}x_{3}=\frac{16}{3}+\frac{5}{3}x_{2}
Add \frac{5}{3}x_{2} to both sides.
\frac{5}{3}x_{3}=\frac{5x_{2}+16}{3}
The equation is in standard form.
\frac{\frac{5}{3}x_{3}}{\frac{5}{3}}=\frac{5x_{2}+16}{\frac{5}{3}\times 3}
Divide both sides of the equation by \frac{5}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x_{3}=\frac{5x_{2}+16}{\frac{5}{3}\times 3}
Dividing by \frac{5}{3} undoes the multiplication by \frac{5}{3}.
x_{3}=x_{2}+\frac{16}{5}
Divide \frac{16+5x_{2}}{3} by \frac{5}{3} by multiplying \frac{16+5x_{2}}{3} by the reciprocal of \frac{5}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}