Evaluate
\frac{3b}{4}
Expand
\frac{3b}{4}
Share
Copied to clipboard
-\frac{2\left(4a+b\right)}{4}+\frac{2a+3b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply -\frac{4a+b}{2} times \frac{2}{2}.
\frac{-2\left(4a+b\right)+2a+3b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
Since -\frac{2\left(4a+b\right)}{4} and \frac{2a+3b}{4} have the same denominator, add them by adding their numerators.
\frac{-8a-2b+2a+3b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
Do the multiplications in -2\left(4a+b\right)+2a+3b.
\frac{-6a+b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
Combine like terms in -8a-2b+2a+3b.
\frac{-6a+b}{4}-3\left(\frac{3\left(a-b\right)}{6}-\frac{2\left(3a-b\right)}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{a-b}{2} times \frac{3}{3}. Multiply \frac{3a-b}{3} times \frac{2}{2}.
\frac{-6a+b}{4}-3\times \frac{3\left(a-b\right)-2\left(3a-b\right)}{6}
Since \frac{3\left(a-b\right)}{6} and \frac{2\left(3a-b\right)}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-6a+b}{4}-3\times \frac{3a-3b-6a+2b}{6}
Do the multiplications in 3\left(a-b\right)-2\left(3a-b\right).
\frac{-6a+b}{4}-3\times \frac{-3a-b}{6}
Combine like terms in 3a-3b-6a+2b.
\frac{-6a+b}{4}-\frac{-3a-b}{2}
Cancel out 6, the greatest common factor in 3 and 6.
\frac{-6a+b}{4}-\frac{2\left(-3a-b\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{-3a-b}{2} times \frac{2}{2}.
\frac{-6a+b-2\left(-3a-b\right)}{4}
Since \frac{-6a+b}{4} and \frac{2\left(-3a-b\right)}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{-6a+b+6a+2b}{4}
Do the multiplications in -6a+b-2\left(-3a-b\right).
\frac{3b}{4}
Combine like terms in -6a+b+6a+2b.
-\frac{2\left(4a+b\right)}{4}+\frac{2a+3b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply -\frac{4a+b}{2} times \frac{2}{2}.
\frac{-2\left(4a+b\right)+2a+3b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
Since -\frac{2\left(4a+b\right)}{4} and \frac{2a+3b}{4} have the same denominator, add them by adding their numerators.
\frac{-8a-2b+2a+3b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
Do the multiplications in -2\left(4a+b\right)+2a+3b.
\frac{-6a+b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
Combine like terms in -8a-2b+2a+3b.
\frac{-6a+b}{4}-3\left(\frac{3\left(a-b\right)}{6}-\frac{2\left(3a-b\right)}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{a-b}{2} times \frac{3}{3}. Multiply \frac{3a-b}{3} times \frac{2}{2}.
\frac{-6a+b}{4}-3\times \frac{3\left(a-b\right)-2\left(3a-b\right)}{6}
Since \frac{3\left(a-b\right)}{6} and \frac{2\left(3a-b\right)}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-6a+b}{4}-3\times \frac{3a-3b-6a+2b}{6}
Do the multiplications in 3\left(a-b\right)-2\left(3a-b\right).
\frac{-6a+b}{4}-3\times \frac{-3a-b}{6}
Combine like terms in 3a-3b-6a+2b.
\frac{-6a+b}{4}-\frac{-3a-b}{2}
Cancel out 6, the greatest common factor in 3 and 6.
\frac{-6a+b}{4}-\frac{2\left(-3a-b\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{-3a-b}{2} times \frac{2}{2}.
\frac{-6a+b-2\left(-3a-b\right)}{4}
Since \frac{-6a+b}{4} and \frac{2\left(-3a-b\right)}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{-6a+b+6a+2b}{4}
Do the multiplications in -6a+b-2\left(-3a-b\right).
\frac{3b}{4}
Combine like terms in -6a+b+6a+2b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}