Solve for u
u\geq -\frac{38}{29}
Quiz
Algebra
5 problems similar to:
- \frac { 4 } { 9 } u - 2 \leq \frac { 7 } { 6 } u + \frac { 1 } { 9 }
Share
Copied to clipboard
-\frac{4}{9}u-2-\frac{7}{6}u\leq \frac{1}{9}
Subtract \frac{7}{6}u from both sides.
-\frac{29}{18}u-2\leq \frac{1}{9}
Combine -\frac{4}{9}u and -\frac{7}{6}u to get -\frac{29}{18}u.
-\frac{29}{18}u\leq \frac{1}{9}+2
Add 2 to both sides.
-\frac{29}{18}u\leq \frac{1}{9}+\frac{18}{9}
Convert 2 to fraction \frac{18}{9}.
-\frac{29}{18}u\leq \frac{1+18}{9}
Since \frac{1}{9} and \frac{18}{9} have the same denominator, add them by adding their numerators.
-\frac{29}{18}u\leq \frac{19}{9}
Add 1 and 18 to get 19.
u\geq \frac{19}{9}\left(-\frac{18}{29}\right)
Multiply both sides by -\frac{18}{29}, the reciprocal of -\frac{29}{18}. Since -\frac{29}{18} is negative, the inequality direction is changed.
u\geq \frac{19\left(-18\right)}{9\times 29}
Multiply \frac{19}{9} times -\frac{18}{29} by multiplying numerator times numerator and denominator times denominator.
u\geq \frac{-342}{261}
Do the multiplications in the fraction \frac{19\left(-18\right)}{9\times 29}.
u\geq -\frac{38}{29}
Reduce the fraction \frac{-342}{261} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}