Solve for x
x=\frac{15\left(y-4\right)}{4}
Solve for y
y=\frac{4\left(x+15\right)}{15}
Graph
Share
Copied to clipboard
-\frac{4}{3}x=20-5y
Subtract 5y from both sides.
\frac{-\frac{4}{3}x}{-\frac{4}{3}}=\frac{20-5y}{-\frac{4}{3}}
Divide both sides of the equation by -\frac{4}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{20-5y}{-\frac{4}{3}}
Dividing by -\frac{4}{3} undoes the multiplication by -\frac{4}{3}.
x=\frac{15y}{4}-15
Divide 20-5y by -\frac{4}{3} by multiplying 20-5y by the reciprocal of -\frac{4}{3}.
5y=20+\frac{4}{3}x
Add \frac{4}{3}x to both sides.
5y=\frac{4x}{3}+20
The equation is in standard form.
\frac{5y}{5}=\frac{\frac{4x}{3}+20}{5}
Divide both sides by 5.
y=\frac{\frac{4x}{3}+20}{5}
Dividing by 5 undoes the multiplication by 5.
y=\frac{4x}{15}+4
Divide 20+\frac{4x}{3} by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}