Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{4}{3}x+4=x^{2}-2x+1-4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
-\frac{4}{3}x+4=x^{2}-2x-3
Subtract 4 from 1 to get -3.
-\frac{4}{3}x+4-x^{2}=-2x-3
Subtract x^{2} from both sides.
-\frac{4}{3}x+4-x^{2}+2x=-3
Add 2x to both sides.
\frac{2}{3}x+4-x^{2}=-3
Combine -\frac{4}{3}x and 2x to get \frac{2}{3}x.
\frac{2}{3}x+4-x^{2}+3=0
Add 3 to both sides.
\frac{2}{3}x+7-x^{2}=0
Add 4 and 3 to get 7.
-x^{2}+\frac{2}{3}x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{2}{3}±\sqrt{\left(\frac{2}{3}\right)^{2}-4\left(-1\right)\times 7}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{2}{3} for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}-4\left(-1\right)\times 7}}{2\left(-1\right)}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}+4\times 7}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}+28}}{2\left(-1\right)}
Multiply 4 times 7.
x=\frac{-\frac{2}{3}±\sqrt{\frac{256}{9}}}{2\left(-1\right)}
Add \frac{4}{9} to 28.
x=\frac{-\frac{2}{3}±\frac{16}{3}}{2\left(-1\right)}
Take the square root of \frac{256}{9}.
x=\frac{-\frac{2}{3}±\frac{16}{3}}{-2}
Multiply 2 times -1.
x=\frac{\frac{14}{3}}{-2}
Now solve the equation x=\frac{-\frac{2}{3}±\frac{16}{3}}{-2} when ± is plus. Add -\frac{2}{3} to \frac{16}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{7}{3}
Divide \frac{14}{3} by -2.
x=-\frac{6}{-2}
Now solve the equation x=\frac{-\frac{2}{3}±\frac{16}{3}}{-2} when ± is minus. Subtract \frac{16}{3} from -\frac{2}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=3
Divide -6 by -2.
x=-\frac{7}{3} x=3
The equation is now solved.
-\frac{4}{3}x+4=x^{2}-2x+1-4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
-\frac{4}{3}x+4=x^{2}-2x-3
Subtract 4 from 1 to get -3.
-\frac{4}{3}x+4-x^{2}=-2x-3
Subtract x^{2} from both sides.
-\frac{4}{3}x+4-x^{2}+2x=-3
Add 2x to both sides.
\frac{2}{3}x+4-x^{2}=-3
Combine -\frac{4}{3}x and 2x to get \frac{2}{3}x.
\frac{2}{3}x-x^{2}=-3-4
Subtract 4 from both sides.
\frac{2}{3}x-x^{2}=-7
Subtract 4 from -3 to get -7.
-x^{2}+\frac{2}{3}x=-7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+\frac{2}{3}x}{-1}=-\frac{7}{-1}
Divide both sides by -1.
x^{2}+\frac{\frac{2}{3}}{-1}x=-\frac{7}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-\frac{2}{3}x=-\frac{7}{-1}
Divide \frac{2}{3} by -1.
x^{2}-\frac{2}{3}x=7
Divide -7 by -1.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=7+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=7+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{64}{9}
Add 7 to \frac{1}{9}.
\left(x-\frac{1}{3}\right)^{2}=\frac{64}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{64}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{8}{3} x-\frac{1}{3}=-\frac{8}{3}
Simplify.
x=3 x=-\frac{7}{3}
Add \frac{1}{3} to both sides of the equation.