Solve for u
u = -\frac{16}{7} = -2\frac{2}{7} \approx -2.285714286
Share
Copied to clipboard
-\frac{4}{3}u+1+\frac{5}{2}u=-\frac{5}{3}
Add \frac{5}{2}u to both sides.
\frac{7}{6}u+1=-\frac{5}{3}
Combine -\frac{4}{3}u and \frac{5}{2}u to get \frac{7}{6}u.
\frac{7}{6}u=-\frac{5}{3}-1
Subtract 1 from both sides.
\frac{7}{6}u=-\frac{5}{3}-\frac{3}{3}
Convert 1 to fraction \frac{3}{3}.
\frac{7}{6}u=\frac{-5-3}{3}
Since -\frac{5}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{6}u=-\frac{8}{3}
Subtract 3 from -5 to get -8.
u=-\frac{8}{3}\times \frac{6}{7}
Multiply both sides by \frac{6}{7}, the reciprocal of \frac{7}{6}.
u=\frac{-8\times 6}{3\times 7}
Multiply -\frac{8}{3} times \frac{6}{7} by multiplying numerator times numerator and denominator times denominator.
u=\frac{-48}{21}
Do the multiplications in the fraction \frac{-8\times 6}{3\times 7}.
u=-\frac{16}{7}
Reduce the fraction \frac{-48}{21} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}