Solve for x
x\geq 2
Graph
Share
Copied to clipboard
-2\times 4\geq 2-5x
Multiply both sides of the equation by 4, the least common multiple of 2,4. Since 4 is positive, the inequality direction remains the same.
-8\geq 2-5x
Multiply -2 and 4 to get -8.
2-5x\leq -8
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
-5x\leq -8-2
Subtract 2 from both sides.
-5x\leq -10
Subtract 2 from -8 to get -10.
x\geq \frac{-10}{-5}
Divide both sides by -5. Since -5 is negative, the inequality direction is changed.
x\geq 2
Divide -10 by -5 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}