Solve for y
y=-\frac{1}{3}\approx -0.333333333
Graph
Share
Copied to clipboard
-4=\left(y+1\right)\left(y+3\right)\left(-3\right)+\left(y+1\right)\times 2
Variable y cannot be equal to any of the values -3,-1 since division by zero is not defined. Multiply both sides of the equation by \left(y+1\right)\left(y+3\right), the least common multiple of \left(y+1\right)\left(y+3\right),y+3.
-4=\left(y^{2}+4y+3\right)\left(-3\right)+\left(y+1\right)\times 2
Use the distributive property to multiply y+1 by y+3 and combine like terms.
-4=-3y^{2}-12y-9+\left(y+1\right)\times 2
Use the distributive property to multiply y^{2}+4y+3 by -3.
-4=-3y^{2}-12y-9+2y+2
Use the distributive property to multiply y+1 by 2.
-4=-3y^{2}-10y-9+2
Combine -12y and 2y to get -10y.
-4=-3y^{2}-10y-7
Add -9 and 2 to get -7.
-3y^{2}-10y-7=-4
Swap sides so that all variable terms are on the left hand side.
-3y^{2}-10y-7+4=0
Add 4 to both sides.
-3y^{2}-10y-3=0
Add -7 and 4 to get -3.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -10 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-10\right)±\sqrt{100-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
Square -10.
y=\frac{-\left(-10\right)±\sqrt{100+12\left(-3\right)}}{2\left(-3\right)}
Multiply -4 times -3.
y=\frac{-\left(-10\right)±\sqrt{100-36}}{2\left(-3\right)}
Multiply 12 times -3.
y=\frac{-\left(-10\right)±\sqrt{64}}{2\left(-3\right)}
Add 100 to -36.
y=\frac{-\left(-10\right)±8}{2\left(-3\right)}
Take the square root of 64.
y=\frac{10±8}{2\left(-3\right)}
The opposite of -10 is 10.
y=\frac{10±8}{-6}
Multiply 2 times -3.
y=\frac{18}{-6}
Now solve the equation y=\frac{10±8}{-6} when ± is plus. Add 10 to 8.
y=-3
Divide 18 by -6.
y=\frac{2}{-6}
Now solve the equation y=\frac{10±8}{-6} when ± is minus. Subtract 8 from 10.
y=-\frac{1}{3}
Reduce the fraction \frac{2}{-6} to lowest terms by extracting and canceling out 2.
y=-3 y=-\frac{1}{3}
The equation is now solved.
y=-\frac{1}{3}
Variable y cannot be equal to -3.
-4=\left(y+1\right)\left(y+3\right)\left(-3\right)+\left(y+1\right)\times 2
Variable y cannot be equal to any of the values -3,-1 since division by zero is not defined. Multiply both sides of the equation by \left(y+1\right)\left(y+3\right), the least common multiple of \left(y+1\right)\left(y+3\right),y+3.
-4=\left(y^{2}+4y+3\right)\left(-3\right)+\left(y+1\right)\times 2
Use the distributive property to multiply y+1 by y+3 and combine like terms.
-4=-3y^{2}-12y-9+\left(y+1\right)\times 2
Use the distributive property to multiply y^{2}+4y+3 by -3.
-4=-3y^{2}-12y-9+2y+2
Use the distributive property to multiply y+1 by 2.
-4=-3y^{2}-10y-9+2
Combine -12y and 2y to get -10y.
-4=-3y^{2}-10y-7
Add -9 and 2 to get -7.
-3y^{2}-10y-7=-4
Swap sides so that all variable terms are on the left hand side.
-3y^{2}-10y=-4+7
Add 7 to both sides.
-3y^{2}-10y=3
Add -4 and 7 to get 3.
\frac{-3y^{2}-10y}{-3}=\frac{3}{-3}
Divide both sides by -3.
y^{2}+\left(-\frac{10}{-3}\right)y=\frac{3}{-3}
Dividing by -3 undoes the multiplication by -3.
y^{2}+\frac{10}{3}y=\frac{3}{-3}
Divide -10 by -3.
y^{2}+\frac{10}{3}y=-1
Divide 3 by -3.
y^{2}+\frac{10}{3}y+\left(\frac{5}{3}\right)^{2}=-1+\left(\frac{5}{3}\right)^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{10}{3}y+\frac{25}{9}=-1+\frac{25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{10}{3}y+\frac{25}{9}=\frac{16}{9}
Add -1 to \frac{25}{9}.
\left(y+\frac{5}{3}\right)^{2}=\frac{16}{9}
Factor y^{2}+\frac{10}{3}y+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{5}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
y+\frac{5}{3}=\frac{4}{3} y+\frac{5}{3}=-\frac{4}{3}
Simplify.
y=-\frac{1}{3} y=-3
Subtract \frac{5}{3} from both sides of the equation.
y=-\frac{1}{3}
Variable y cannot be equal to -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}