Solve for p
p = \frac{5}{4} = 1\frac{1}{4} = 1.25
Share
Copied to clipboard
-\frac{39}{8}+\frac{7}{3}p=\frac{3}{2}p-\frac{23}{6}
Combine p and \frac{4}{3}p to get \frac{7}{3}p.
-\frac{39}{8}+\frac{7}{3}p-\frac{3}{2}p=-\frac{23}{6}
Subtract \frac{3}{2}p from both sides.
-\frac{39}{8}+\frac{5}{6}p=-\frac{23}{6}
Combine \frac{7}{3}p and -\frac{3}{2}p to get \frac{5}{6}p.
\frac{5}{6}p=-\frac{23}{6}+\frac{39}{8}
Add \frac{39}{8} to both sides.
\frac{5}{6}p=-\frac{92}{24}+\frac{117}{24}
Least common multiple of 6 and 8 is 24. Convert -\frac{23}{6} and \frac{39}{8} to fractions with denominator 24.
\frac{5}{6}p=\frac{-92+117}{24}
Since -\frac{92}{24} and \frac{117}{24} have the same denominator, add them by adding their numerators.
\frac{5}{6}p=\frac{25}{24}
Add -92 and 117 to get 25.
p=\frac{25}{24}\times \frac{6}{5}
Multiply both sides by \frac{6}{5}, the reciprocal of \frac{5}{6}.
p=\frac{25\times 6}{24\times 5}
Multiply \frac{25}{24} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
p=\frac{150}{120}
Do the multiplications in the fraction \frac{25\times 6}{24\times 5}.
p=\frac{5}{4}
Reduce the fraction \frac{150}{120} to lowest terms by extracting and canceling out 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}