Evaluate
\frac{1}{24}\approx 0.041666667
Factor
\frac{1}{2 ^ {3} \cdot 3} = 0.041666666666666664
Share
Copied to clipboard
-\frac{3}{5}\left(-\frac{5}{18}\right)-\left(-\frac{21}{56}\right)\left(-\frac{1}{3}\right)
Reduce the fraction \frac{36}{60} to lowest terms by extracting and canceling out 12.
\frac{-3\left(-5\right)}{5\times 18}-\left(-\frac{21}{56}\right)\left(-\frac{1}{3}\right)
Multiply -\frac{3}{5} times -\frac{5}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{90}-\left(-\frac{21}{56}\right)\left(-\frac{1}{3}\right)
Do the multiplications in the fraction \frac{-3\left(-5\right)}{5\times 18}.
\frac{1}{6}-\left(-\frac{21}{56}\right)\left(-\frac{1}{3}\right)
Reduce the fraction \frac{15}{90} to lowest terms by extracting and canceling out 15.
\frac{1}{6}-\left(-\frac{3}{8}\left(-\frac{1}{3}\right)\right)
Reduce the fraction \frac{21}{56} to lowest terms by extracting and canceling out 7.
\frac{1}{6}-\frac{-3\left(-1\right)}{8\times 3}
Multiply -\frac{3}{8} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{6}-\frac{3}{24}
Do the multiplications in the fraction \frac{-3\left(-1\right)}{8\times 3}.
\frac{1}{6}-\frac{1}{8}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\frac{4}{24}-\frac{3}{24}
Least common multiple of 6 and 8 is 24. Convert \frac{1}{6} and \frac{1}{8} to fractions with denominator 24.
\frac{4-3}{24}
Since \frac{4}{24} and \frac{3}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{24}
Subtract 3 from 4 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}