Solve for x
x = \frac{389}{16} = 24\frac{5}{16} = 24.3125
Graph
Share
Copied to clipboard
-17\times 31=170x\left(-\frac{15}{17}\right)+10\times 64+170x\times \frac{3}{5}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 170x, the least common multiple of 10x,17,17x,5.
-527=170x\left(-\frac{15}{17}\right)+10\times 64+170x\times \frac{3}{5}
Multiply -17 and 31 to get -527.
-527=-150x+10\times 64+170x\times \frac{3}{5}
Multiply 170 and -\frac{15}{17} to get -150.
-527=-150x+640+170x\times \frac{3}{5}
Multiply 10 and 64 to get 640.
-527=-150x+640+102x
Multiply 170 and \frac{3}{5} to get 102.
-527=-48x+640
Combine -150x and 102x to get -48x.
-48x+640=-527
Swap sides so that all variable terms are on the left hand side.
-48x=-527-640
Subtract 640 from both sides.
-48x=-1167
Subtract 640 from -527 to get -1167.
x=\frac{-1167}{-48}
Divide both sides by -48.
x=\frac{389}{16}
Reduce the fraction \frac{-1167}{-48} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}