Evaluate
-\frac{r^{2}+14r+6}{2\left(r-1\right)\left(r+6\right)}
Expand
-\frac{r^{2}+14r+6}{2\left(r-1\right)\left(r+6\right)}
Share
Copied to clipboard
-\frac{3\times 2\left(r-1\right)}{2\left(r-1\right)\left(r+6\right)}-\frac{\left(r+2\right)\left(r+6\right)}{2\left(r-1\right)\left(r+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of r+6 and 2\left(r-1\right) is 2\left(r-1\right)\left(r+6\right). Multiply -\frac{3}{r+6} times \frac{2\left(r-1\right)}{2\left(r-1\right)}. Multiply \frac{r+2}{2\left(r-1\right)} times \frac{r+6}{r+6}.
\frac{-3\times 2\left(r-1\right)-\left(r+2\right)\left(r+6\right)}{2\left(r-1\right)\left(r+6\right)}
Since -\frac{3\times 2\left(r-1\right)}{2\left(r-1\right)\left(r+6\right)} and \frac{\left(r+2\right)\left(r+6\right)}{2\left(r-1\right)\left(r+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-6r+6-r^{2}-6r-2r-12}{2\left(r-1\right)\left(r+6\right)}
Do the multiplications in -3\times 2\left(r-1\right)-\left(r+2\right)\left(r+6\right).
\frac{-14r-6-r^{2}}{2\left(r-1\right)\left(r+6\right)}
Combine like terms in -6r+6-r^{2}-6r-2r-12.
\frac{-14r-6-r^{2}}{2r^{2}+10r-12}
Expand 2\left(r-1\right)\left(r+6\right).
-\frac{3\times 2\left(r-1\right)}{2\left(r-1\right)\left(r+6\right)}-\frac{\left(r+2\right)\left(r+6\right)}{2\left(r-1\right)\left(r+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of r+6 and 2\left(r-1\right) is 2\left(r-1\right)\left(r+6\right). Multiply -\frac{3}{r+6} times \frac{2\left(r-1\right)}{2\left(r-1\right)}. Multiply \frac{r+2}{2\left(r-1\right)} times \frac{r+6}{r+6}.
\frac{-3\times 2\left(r-1\right)-\left(r+2\right)\left(r+6\right)}{2\left(r-1\right)\left(r+6\right)}
Since -\frac{3\times 2\left(r-1\right)}{2\left(r-1\right)\left(r+6\right)} and \frac{\left(r+2\right)\left(r+6\right)}{2\left(r-1\right)\left(r+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-6r+6-r^{2}-6r-2r-12}{2\left(r-1\right)\left(r+6\right)}
Do the multiplications in -3\times 2\left(r-1\right)-\left(r+2\right)\left(r+6\right).
\frac{-14r-6-r^{2}}{2\left(r-1\right)\left(r+6\right)}
Combine like terms in -6r+6-r^{2}-6r-2r-12.
\frac{-14r-6-r^{2}}{2r^{2}+10r-12}
Expand 2\left(r-1\right)\left(r+6\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}