Solve for x (complex solution)
x=\frac{\sqrt{3}i}{21}-\frac{3}{7}\approx -0.428571429+0.08247861i
x=-\frac{\sqrt{3}i}{21}-\frac{3}{7}\approx -0.428571429-0.08247861i
Graph
Share
Copied to clipboard
-\frac{3}{8}x^{2}+\frac{9}{4}x+\frac{1}{2}=-3x^{2}
Anything plus zero gives itself.
-\frac{3}{8}x^{2}+\frac{9}{4}x+\frac{1}{2}+3x^{2}=0
Add 3x^{2} to both sides.
\frac{21}{8}x^{2}+\frac{9}{4}x+\frac{1}{2}=0
Combine -\frac{3}{8}x^{2} and 3x^{2} to get \frac{21}{8}x^{2}.
x=\frac{-\frac{9}{4}±\sqrt{\left(\frac{9}{4}\right)^{2}-4\times \frac{21}{8}\times \frac{1}{2}}}{2\times \frac{21}{8}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{21}{8} for a, \frac{9}{4} for b, and \frac{1}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{9}{4}±\sqrt{\frac{81}{16}-4\times \frac{21}{8}\times \frac{1}{2}}}{2\times \frac{21}{8}}
Square \frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{9}{4}±\sqrt{\frac{81}{16}-\frac{21}{2}\times \frac{1}{2}}}{2\times \frac{21}{8}}
Multiply -4 times \frac{21}{8}.
x=\frac{-\frac{9}{4}±\sqrt{\frac{81}{16}-\frac{21}{4}}}{2\times \frac{21}{8}}
Multiply -\frac{21}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{9}{4}±\sqrt{-\frac{3}{16}}}{2\times \frac{21}{8}}
Add \frac{81}{16} to -\frac{21}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{9}{4}±\frac{\sqrt{3}i}{4}}{2\times \frac{21}{8}}
Take the square root of -\frac{3}{16}.
x=\frac{-\frac{9}{4}±\frac{\sqrt{3}i}{4}}{\frac{21}{4}}
Multiply 2 times \frac{21}{8}.
x=\frac{-9+\sqrt{3}i}{4\times \frac{21}{4}}
Now solve the equation x=\frac{-\frac{9}{4}±\frac{\sqrt{3}i}{4}}{\frac{21}{4}} when ± is plus. Add -\frac{9}{4} to \frac{i\sqrt{3}}{4}.
x=\frac{\sqrt{3}i}{21}-\frac{3}{7}
Divide \frac{-9+i\sqrt{3}}{4} by \frac{21}{4} by multiplying \frac{-9+i\sqrt{3}}{4} by the reciprocal of \frac{21}{4}.
x=\frac{-\sqrt{3}i-9}{4\times \frac{21}{4}}
Now solve the equation x=\frac{-\frac{9}{4}±\frac{\sqrt{3}i}{4}}{\frac{21}{4}} when ± is minus. Subtract \frac{i\sqrt{3}}{4} from -\frac{9}{4}.
x=-\frac{\sqrt{3}i}{21}-\frac{3}{7}
Divide \frac{-9-i\sqrt{3}}{4} by \frac{21}{4} by multiplying \frac{-9-i\sqrt{3}}{4} by the reciprocal of \frac{21}{4}.
x=\frac{\sqrt{3}i}{21}-\frac{3}{7} x=-\frac{\sqrt{3}i}{21}-\frac{3}{7}
The equation is now solved.
-\frac{3}{8}x^{2}+\frac{9}{4}x+\frac{1}{2}=-3x^{2}
Anything plus zero gives itself.
-\frac{3}{8}x^{2}+\frac{9}{4}x+\frac{1}{2}+3x^{2}=0
Add 3x^{2} to both sides.
\frac{21}{8}x^{2}+\frac{9}{4}x+\frac{1}{2}=0
Combine -\frac{3}{8}x^{2} and 3x^{2} to get \frac{21}{8}x^{2}.
\frac{21}{8}x^{2}+\frac{9}{4}x=-\frac{1}{2}
Subtract \frac{1}{2} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{21}{8}x^{2}+\frac{9}{4}x}{\frac{21}{8}}=-\frac{\frac{1}{2}}{\frac{21}{8}}
Divide both sides of the equation by \frac{21}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{9}{4}}{\frac{21}{8}}x=-\frac{\frac{1}{2}}{\frac{21}{8}}
Dividing by \frac{21}{8} undoes the multiplication by \frac{21}{8}.
x^{2}+\frac{6}{7}x=-\frac{\frac{1}{2}}{\frac{21}{8}}
Divide \frac{9}{4} by \frac{21}{8} by multiplying \frac{9}{4} by the reciprocal of \frac{21}{8}.
x^{2}+\frac{6}{7}x=-\frac{4}{21}
Divide -\frac{1}{2} by \frac{21}{8} by multiplying -\frac{1}{2} by the reciprocal of \frac{21}{8}.
x^{2}+\frac{6}{7}x+\left(\frac{3}{7}\right)^{2}=-\frac{4}{21}+\left(\frac{3}{7}\right)^{2}
Divide \frac{6}{7}, the coefficient of the x term, by 2 to get \frac{3}{7}. Then add the square of \frac{3}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{6}{7}x+\frac{9}{49}=-\frac{4}{21}+\frac{9}{49}
Square \frac{3}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{6}{7}x+\frac{9}{49}=-\frac{1}{147}
Add -\frac{4}{21} to \frac{9}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{7}\right)^{2}=-\frac{1}{147}
Factor x^{2}+\frac{6}{7}x+\frac{9}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{7}\right)^{2}}=\sqrt{-\frac{1}{147}}
Take the square root of both sides of the equation.
x+\frac{3}{7}=\frac{\sqrt{3}i}{21} x+\frac{3}{7}=-\frac{\sqrt{3}i}{21}
Simplify.
x=\frac{\sqrt{3}i}{21}-\frac{3}{7} x=-\frac{\sqrt{3}i}{21}-\frac{3}{7}
Subtract \frac{3}{7} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}